Advertisement

Teaching Wonder (From 3rd Century BCE to 21st Century CE)

  • N. Ambrosetti
Conference paper
Part of the History of Mechanism and Machine Science book series (HMMS, volume 37)

Abstract

In this paper, we investigate the pedagogical style of renown Alexandrian engineers, such as Heron and Philon, as it appears in their handbooks about pneumatics, the precursor of robotics, to identify the main features of Alexandrian didactics about the topic, and to compare them with modern STEM education with robotics, in order to check their degree of modernity.

Keywords

Education Pneumatics Heron Philon Skills STEM Engineering Robotics Teaching 

References

  1. 1.
    Woodcroft B (1851) The pneumatics of Hero of Alexandria. Taylor Walton and Maberly (1851)Google Scholar
  2. 2.
    Schmidt W (1899) Heronis Alexandrini opera quae supersunt omnia, vol. 1, Pneumatica et Automata. TeubnerGoogle Scholar
  3. 3.
    Carra de Vaux B (1903) Le livre des appareils pneumatiques et des machines hydrauliques de Philon de Byzance d’après les versions arabes d’Oxford et de Constantinople. Académie des inscrip-tions et des belles lettres: notices et extraits des mss. de la Bibliothèque Nationale, vol 38, pp 227–235Google Scholar
  4. 4.
    Drachmann AG (1948) Ktesibios, Philon and Heron: a study in ancient pneumatics. MunksgaardGoogle Scholar
  5. 5.
    Drachmann AG (1972) Hero of Alexandria, in dictionary of scientific biography. Charles Scribner’s Sons, New York, pp 310–315Google Scholar
  6. 6.
    Drachmann AG (1974) Philo of Byzantium. In: Dictionary of scientific biography. Charles Scribner’s Sons, New York, pp 586–589Google Scholar
  7. 7.
    Rose V (1899) Vitruvii de Architectura Libri Decem. Teubner, BerlinGoogle Scholar
  8. 8.
    Schiefsky MJ (2007) Theory and practice in Heron’s mechanics, in mechanics and natural philosophy before the scientific revolution. Springer, New York, pp 15–49Google Scholar
  9. 9.
    Damerow P, Lefèvre W (1994) Wissenssysteme im geschichtlichen Wandel, Max-Planck-Inst. für WissenschaftsgeschichteGoogle Scholar
  10. 10.
    Russo L (1996) La rivoluzione dimenticata, FeltrinelliGoogle Scholar
  11. 11.
    Gonzalez HB, Kuenzi JJ (2012) Science, technology, engineering, and mathematics (STEM) education: a primer. Congressional Research Service, Library of CongressGoogle Scholar
  12. 12.
    Falah B, Noreddine H (2017) Pedagogical robotics - a way to experiment and innovate in educational teaching in Morocco. IJELS 2:71–75Google Scholar
  13. 13.
    Whittier LE, Robinson M (2007) Teaching evolution to non-English proficient students by using LEGO robotics. Am Secondary Educ 35:19–28Google Scholar
  14. 14.
    Kapila V (2014) Teaching STEM with robotics: design, development, and testing of a research-based professional development program for teachers. https://cadrek12.org/projects/teaching-stem-robotics-design-development-and-testing-research-based-professional-developme
  15. 15.
    Cuellar F et al (2014) Robotics education initiative for analyzing learning and child-parent interaction in 2014. In: IEEE frontiers in education conference (FIE) proceedings, pp 1–6 (2014)Google Scholar
  16. 16.
    Grubbs M (2013) Robotics intrigue middle school students and build STEM skills. Technol. Eng. Teach. 72:12–16Google Scholar
  17. 17.
    Bianco AS (2014) Starting and teaching: basic robotics in the classroom: modern, engaging engineering in technology education. Technol. Eng. Teach. 73:32–38Google Scholar
  18. 18.
    Eguchi A (2016) RoboCupJunior for promoting STEM education, 21st century skills, and techno-logical advancement through robotics competition. Robot Autonom Syst 75:692–699CrossRefGoogle Scholar
  19. 19.
    Leonard J et al (2016) Using robotics and game design to enhance children’s self-efficacy, STEM attitudes, and computational thinking skills. J. Sci. Educ. Technol. 25:860–876CrossRefGoogle Scholar
  20. 20.
    Kandlhofer M, Steinbauer G (2016) Evaluating the impact of educational robotics on pupils’ technical- and social-skills and science related attitudes. Robot Autonom Syst 75:679–685CrossRefGoogle Scholar
  21. 21.
    Barak M, Assal M (2018) Robotics and STEM learning: students’ achievements in assignments according to the P3 task taxonomy—practice, problem solving, and projects. Int J Technol Design Educ 28:121–144CrossRefGoogle Scholar
  22. 22.
    Berryman S (2003) Ancient automata and mechanical explanation. Phronesis 48:344–369CrossRefGoogle Scholar
  23. 23.
    van Leeuwen J (2016) The Aristotelian mechanics: text and diagrams. Springer, HeidelbergGoogle Scholar
  24. 24.
    Ziaeefard S et al (2017) Co-robotics hands-on activities: a gateway to engineering design and STEM learning. Robot Autonom Syst 97:40–50CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of MilanMilanItaly

Personalised recommendations