Aladağlar Mountain Range: A Landscape-Shaped by the Interplay of Glacial, Karstic, and Fluvial Erosion

  • C. Serdar BayarıEmail author
  • Alexander Klimchouk
  • Mehmet Akif Sarıkaya
  • Lütfi Nazik
Part of the World Geomorphological Landscapes book series (WGLC)


The Aladağlar Mountain Range (AMR) is a large massif mainly composed of carbonate rocks hosting beautiful examples of glacial, karstic, and fluvial erosion. Extreme variations in climate and topography as well as the multitude of diverse geochemical conditions since the early Paleocene allowed development of huge hypogenic and epigenic karst systems. The interplay between the surface and karst drainage systems resulted in an attractive fluvial morphology with large karst springs, travertine bridges, gorges, and valleys. All of the karst valleys spreading from the heights of the AMR-hosted valley glaciers that once flowed down to 1100 m elevation. With its diverse landscape, the AMR is a promising land for tourists, backpackers, trekkers, and mountaineers. Large hanging karst springs, long rafting routes along gorges, travertine bridges, U-shaped glacial valleys and lakes, and challenging peaks are the major landscape attractions.


Aladağlar Mountain Range Glacio-karst Quaternary glaciation Hanging karst spring Travertine bridge 



The authors thank the following institutions for their support/funding through various projects: General Directorate of Mineral Resources of Turkey (MTA), Hacettepe University Research Fund, The Scientific and Technical Research Council of Turkey (TÜBİTAK project 112Y087), National Science Foundation (USA) and Ukrainian Speleological Association.


  1. Bayarı CS (2002) A rare landform: Yerköprü travertine bridges in the Taurids karst range, Turkey. Earth Surf Process Land 27:577–590CrossRefGoogle Scholar
  2. Bayarı CS, Günay G (1995) Combined use of environmental isotopic and hydrochemical data in differentiation of groundwater flow patterns through the Aladag karstic aquifer-Turkey. Application of Tracers in Arid zone Hydrology. IAHS Publication No 232, pp 99–117Google Scholar
  3. Bayarı CS, Zreda M, Çiner A, Nazik L, Törk K, Özyurt NN, Klimchouk A, Sarıkaya MA (2003) The extent of Pleistocene ice cap, glacial deposits and glaciokarst in the Aladaglar Massif: central Taurids Range, Southern Turkey. In: XVI Inqua Congress, Paper #55360, XVI Inqua Congress, Reno Nevada USA, 23–30 July 2003, Abstracts, 144Google Scholar
  4. Çiner A (2004) Turkish glaciers and glacial deposits. In: Ehlers J, Gibbard PL (eds) “Quaternary glaciations: extent and chronology”, Part. I: Europe”, vol. 2. Elsevier Publications, Developments in Quaternary Science, Amsterdam, The Netherlands, pp 419–429. Scholar
  5. Jaffey N, Robertson AHF (2001) New sedimentological and structural data from the Ecemiş Fault Zone, southern Turkey: implications for its timing and offset and the Cenozoic tectonic escape of Anatolia. J Geol Soc Lond 158:367–378CrossRefGoogle Scholar
  6. Jaffey N, Robertson AHF (2004) Non-marine sedimentation associated with Oligocene-Recent exhumation and uplift of the Central Taurus Mountains, Turkey. Sediment Geol 173:53–89CrossRefGoogle Scholar
  7. Klimchouk A, Bayarı CS, Nazik L, Törk K (2006) Glacial destruction of cave systems in high mountains, with special reference to the Aladağlar massif, Central Taurids, Turkey. Acta Carsol 35(2):111–122Google Scholar
  8. Oliva M, Žebre M, Guglielmin MM, Hughes P, Çiner A, Vieria G, Bodin X, Andrés N, Colucci RR, García-Hernández C, Mora C, Nofre J, Palacios D, Pérez-Alberti A, Ribolini A, Ruiz-Fernández J, Sarıkaya MA, Serrano E, Urdea P, Valcárcel M, Woodward J, Yıldırım C (2018) The existence of permafrost conditions in the Mediterranean basin since the Last Glaciation. Earth Sci Rev 185:397–436. Scholar
  9. Özgül N (1984) Stratigraphy and tectonic evolution of the central Taurides. In: Tekeli O, Göncüoğlu MC (eds) Geology of the Taurus Belt: proceedings of international symposium, Ankara, Turkey, 26–29 September, pp 77–99Google Scholar
  10. Öztürk MZ, Şimşek M, Şener MF, Utlu M (2018) GIS based analysis of doline density on Taurus Mountains, Turkey. Environ Earth Sci 77:536. Scholar
  11. Özyurt NN, Bayarı CS (2005) Steady and unsteady state lumped parameter modelling of 3H and CFCs transport: hypothetical analyses and application to an alpine karst aquifer. Hydrol Process 19(17):3269–3284CrossRefGoogle Scholar
  12. Özyurt NN, Bayarı CS (2008) Temporal variation of chemical and isotopic signals in major discharges of an Alpine karst aquifer in Turkey: implications with respect to response of karst aquifers to recharge. Hydrogeol J 16:297–309CrossRefGoogle Scholar
  13. Sarıkaya MA, Çiner A (2015) Late Pleistocene glaciations and paleoclimate of Turkey. Bull Miner Res Explor (MTA) 151:107–127Google Scholar
  14. Sarıkaya MA, Çiner A (2017). The late Quaternary glaciation in the Eastern Mediterranean. In: Hughes P, Woodward J (eds) “Quaternary Glaciation in the Mediterranean Mountains”, vol 433. Geological Society of London, Special Publication, pp 289–305. Scholar
  15. Sarıkaya MA, Çiner A, Zreda M (2011) Quaternary glaciations of Turkey. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations-extent and chronology; a closer look, vol 15. Elsevier Publications, Developments in Quaternary Science, Amsterdam, The Netherlands, pp 393–403. Scholar
  16. Sarıkaya MA, Yıldırım C, Çiner A (2015a) No surface breaking on Ecemiş Fault, central Turkey, since Late Pleistocene (64.5 ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophys 649:33–46. Scholar
  17. Sarıkaya MA, Yıldırım C, Çiner A (2015b) Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: insights from cosmogenic nuclides. Geomorphol 228:512–525. Scholar
  18. Spreitzer H (1957) Zur geographie des Kilikischen Ala Dağ im Taurus, Festschr. Z. Hundertjahrfeier der Georg.Ges.Wien, s. 414–459, m.1 Taf., 8 Abb. İ Text u 12 BildernGoogle Scholar
  19. Spreitzer H (1971) Rezente und eiszeitliche Grenzen der und periglazialen Höhenstufen im Zentralen Taurus (vornehmlich am Beispiel des Kilikischen Ala Dağ), Mitt naturwiss. Ver Steiermark, Band 101, 139–162, GrazGoogle Scholar
  20. Tekeli O, Aksay A, Ürgün BM, Işık A (1984) Geology of the Aladağ Mountains. In: Geology of the Taurus Belt, proceedings of international symposium, Ankara-Turkey, 26–29 SeptemberGoogle Scholar
  21. Yıldırım C, Sarıkaya MA, Çiner A (2016) Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault Zone. Tectonics 35. Scholar
  22. Zreda M, Çiner A, Bayarı CS, Sarıkaya A (2004) Magnitude of Quaternary glaciers and glaciations from low to high latitudes: global or local dominant controlling factors, TÜBİTAK—NSF Project, Final Report, 86 pGoogle Scholar
  23. Zreda M, Çiner A, Sarıkaya MA, Zweck C, Bayarı CS (2011) Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene-Holocene boundary. Geology 39(11):1051–1054CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. Serdar Bayarı
    • 1
    Email author
  • Alexander Klimchouk
    • 2
  • Mehmet Akif Sarıkaya
    • 3
  • Lütfi Nazik
    • 4
  1. 1.Department of Geological EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Institute of Geological Sciences, National Academy of Sciences of UkraineKievUkraine
  3. 3.Eurasia Institute of Earth Sciences, Istanbul Technical UniversityIstanbulTurkey
  4. 4.Department of GeographyAhi Evran UniversityKırşehirTurkey

Personalised recommendations