Advertisement

Physical Layer Security of Energy Harvesting Machine-to-Machine Communication System

  • Furqan Jameel
  • Muhammad Awais Javed
  • Dushantha Nalin K. Jayakody
Chapter

Abstract

Machine-to-machine (M2M) communication is emerging as a new paradigm to realize the concept of smart cities. In this chapter, we provide a comprehensive introduction to M2M communications, discuss its applications, and highlight its critical challenges. The chapter also provides a discussion of the energy harvesting techniques and their importance in modern wireless communication systems. Here, we mainly focus on RF energy harvesting due to its dual use in energy harvesting and information transfer. Next, a detailed discussion on recent trends of physical layer security (PLS) is presented. Using this basic knowledge of PLS and RF energy harvesting, we analyze the secrecy performance of an M2M communication system under the imperfect knowledge of wireless channel state. Later, the chapter provides a comparison of two jamming techniques, namely, full duplex (FD) jamming and dedicated jamming. It is shown that the dedicated jamming performs better than the FD jamming at the cost of introducing an additional node with additional power requirements. The results also show that by increasing the energy harvesting duration of devices, the FD destination-assisted jamming can also perform very close to dedicated jamming.

Keywords

Energy harvesting Full duplex Machine-to-machine Physical layer security 

References

  1. 1.
    V. Vijayaraghavan, R. Agarwal, Security and privacy across connected environments, in Connected Environments for the Internet of Things (Springer, Cham, 2017), pp. 19–39CrossRefGoogle Scholar
  2. 2.
    A. Elmangoush, A. Al-Hezmi, T. Magedanz, The development of M2M standards for ubiquitous sensing service layer, in Globecom Workshops (GC Wkshps), 2014 (IEEE, 2014), pp. 624–629Google Scholar
  3. 3.
    M. Chen, J. Wan, S. González-Valenzuela, X. Liao, V.C. Leung, A survey of recent developments in home M2M networks. IEEE Commun. Surv. Tutorials 16(1), 98–114 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Rico, B. Cendn, J. Lanza, J. Valio, Bringing IoT to hospital logistics systems demonstrating the concept, in 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2012, pp. 196–201Google Scholar
  5. 5.
    A.S. Lalos, L. Alonso, C. Verikoukis, Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs. Digital Signal Process. 35, 105–116 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Subhani, H. Shi, J.F.G. Cobben, A survey of technical challenges in wireless machine-to-machine communication for smart grids, in 2015 50th International Universities Power Engineering Conference (UPEC), 2015, pp. 1–6Google Scholar
  7. 7.
    M. Alsabaan, W. Alasmary, A. Albasir, K. Naik, Vehicular networks for a greener environment: a survey. IEEE Commun. Surv. Tutorials 15(3), 1372–1388 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Zeng, N. Xiong, L.T. Yang, Y. Zhang, Cross-layer routing in wireless sensor networks for machine-to-machine intelligent hazard monitoring applications, in 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2011, pp. 206–211Google Scholar
  9. 9.
    A. Laya, L. Alonso, J. Alonso-Zarate, Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives. IEEE Commun. Surv. Tutorials 16(1), 4–16 (2014)CrossRefGoogle Scholar
  10. 10.
    E. Ronen, A. Shamir, A.-O. Weingarten, C. O’Flynn, IoT goes nuclear: creating a ZigBee chain reaction, in 2017 IEEE Symposium on Security and Privacy (SP) (IEEE, 2017), pp. 195–212Google Scholar
  11. 11.
    F. Jameel, M.A. Javed, D.N.K. Jayakody, S.A. Hassan, On secrecy performance of industrial Internet of things. Internet Technol. Lett. 1(2), e32.  https://doi.org/10.1002/itl2.32 CrossRefGoogle Scholar
  12. 12.
    F. Jameel, F. Khan, M.A.A. Haider, A.U. Haq, Secrecy analysis of relay assisted device-to-device systems under channel uncertainty, in International Conference on Frontiers of Information Technology (FIT), 2017, pp. 345–349Google Scholar
  13. 13.
    F. Jameel, S. Wyne, I. Krikidis, Secrecy outage for wireless sensor networks. IEEE Commun. Lett. 21(7), 1565–1568 (2017)CrossRefGoogle Scholar
  14. 14.
    I. Ganchev, M. Curado, A. Kassler, Wireless Networking for Moving Objects: Protocols, Architectures, Tools, Services and Applications, vol. 8611 (Springer, Cham, 2014)Google Scholar
  15. 15.
    R. Lu, X. Li, X. Liang, X. Shen, X. Lin, GRS: The green, reliability, and security of emerging machine to machine communications. IEEE Commun. Mag. 49(4), 28–35 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Kitagami, Y. Kaneko, T. Suganuma, Method of autonomic load balancing for long polling in M2M service system, in 26th International Conference on Advanced Information Networking and Applications Workshops (WAINA) (IEEE, 2012), pp. 294–299Google Scholar
  17. 17.
    M. Saedy, V. Mojtahed, Ad Hoc M2M communications and security based on 4G cellular system, in Wireless Telecommunications Symposium (WTS) (IEEE, 2011), pp. 1–5Google Scholar
  18. 18.
    Z. Fu, X. Jing, S. Sun, Application-based identity management in M2M system. IET Conf. Proc. 211–215 (2011)Google Scholar
  19. 19.
    C. Hongsong, F. Zhongchuan, Z. Dongyan, Security and trust research in M2M system, in IEEE International Conference on Vehicular Electronics and Safety (ICVES) (IEEE, 2011), pp. 286–290Google Scholar
  20. 20.
    T.D.P. Perera, D.N.K. Jayakody, S.K. Sharma, S. Chatzinotas, J. Li, Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun. Surv. Tutorials 20(1), 264–302 (2018)CrossRefGoogle Scholar
  21. 21.
    D.N.K. Jayakody, J. Thompson, S. Chatzinotas, S. Durrani, Wireless Information and Power Transfer: A New Paradigm for Green Communications (Springer, Cham, 2017)Google Scholar
  22. 22.
    M. Raju, M. Grazier, Energy harvesting. ULP meets energy harvesting: a game-changing combination for design engineers. http://focus.ti.com/lit/wp/slyy018/slyy018.pdf (2008) 3413–3423
  23. 23.
    W.K. Seah, Z.A. Eu, H.-P. Tan, Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-survey and challenges, in Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009. 1st International Conference on Wireless VITAE 2009 (IEEE, 2009), pp. 1–5Google Scholar
  24. 24.
    B.H. Calhoun, D.C. Daly, N. Verma, D.F. Finchelstein, D.D. Wentzloff, A. Wang, S.-H. Cho, A.P. Chandrakasan, Design considerations for ultra-low energy wireless microsensor nodes. IEEE Trans. Comput. 54(6), 727–740 (2005)CrossRefGoogle Scholar
  25. 25.
    C. Alippi, C. Galperti, An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Trans. Circuits Syst. I Regul. Pap. 55(6), 1742–1750 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    L. Mateu, C. Codrea, N. Lucas, M. Pollak, P. Spies, Human body energy harvesting thermogenerator for sensing applications, in 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), 2007, pp. 366–372Google Scholar
  27. 27.
    F. Mansourkiaie, L.S. Ismail, T.M. Elfouly, M.H. Ahmed, Maximizing lifetime in wireless sensor network for structural health monitoring with and without energy harvesting. IEEE Access 5, 2383–2395 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Najimi, A. Ebrahimzadeh, S.M.H. Andargoli, A. Fallahi, Lifetime maximization in cognitive sensor networks based on the node selection. IEEE Sens. J. 14(7), 2376–2383 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Salarian, K.W. Chin, F. Naghdy, An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Chen, Q. Zhao, On the lifetime of wireless sensor networks. IEEE Commun. Lett. 9(11), 976–978 (2005)CrossRefGoogle Scholar
  31. 31.
    J.W. Jung, M.A. Weitnauer, On using cooperative routing for lifetime optimization of multi-hop wireless sensor networks: analysis and guidelines. IEEE Trans. Commun. 61(8), 3413–3423 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Jameel, S. Wyne, Secrecy outage of SWIPT in the presence of cooperating eavesdroppers. AEU Int. J. Electron. Commun. 77, 23–26 (2017)CrossRefGoogle Scholar
  33. 33.
    K. Huang, V.K. Lau, Enabling wireless power transfer in cellular networks: architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Liu, R. Zhang, K.-C. Chua, Multi-antenna wireless powered communication with energy beamforming. IEEE Trans. Commun. 62(12), 4349–4361 (2014)CrossRefGoogle Scholar
  35. 35.
    L.R. Varshney, Transporting information and energy simultaneously, in IEEE International Symposium on Information Theory, 2008. ISIT 2008 (IEEE, 2008), pp. 1612–1616Google Scholar
  36. 36.
    F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, M.A. Javed, A Survey of device-to-device communications: research issues and challenges. IEEE Commun. Surv. Tutorials 1–1 (2018).  https://doi.org/10.1109/COMST.2018.2828120 CrossRefGoogle Scholar
  37. 37.
    P. Grover, A. Sahai, Shannon meets Tesla: wireless information and power transfer, in 2010 IEEE International Symposium on Information Theory Proceedings (ISIT) (IEEE, 2010), pp. 2363–2367Google Scholar
  38. 38.
    D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (2013)CrossRefGoogle Scholar
  39. 39.
    Q. Shi, L. Liu, W. Xu, R. Zhang, Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Trans. Wirel. Commun. 13(6), 3269–3280 (2014)CrossRefGoogle Scholar
  40. 40.
    D. Li, C. Shen, Z. Qiu, Two-way relay beamforming for sum-rate maximization and energy harvesting, in 2013 IEEE International Conference on Communications (ICC) (IEEE, 2013), pp. 3115–3120Google Scholar
  41. 41.
    D.S. Michalopoulos, H.A. Suraweera, R. Schober, Simultaneous information transmission and wireless energy transfer via selecting one out of two relays, in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP) (IEEE, 2014), pp. 318–321Google Scholar
  42. 42.
    F. Jameel, S. Wyne, G. Kaddoum, T.Q. Duong, A comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Commun. Surv. Tutorials 1–1 (2018).  https://doi.org/10.1109/COMST.2018.2865607
  43. 43.
    F. Jameel, M. Faisal, A.A. Haider, A.A. Butt, Physical layer security under Rayleigh/Weibull and Hoyt/Weibull fading, in 2017 13th International Conference on Emerging Technologies (ICET), 2017, pp. 1–5.  https://doi.org/10.1109/ICET.2017.8281715
  44. 44.
    A. Zhang, L. Wang, X. Ye, X. Lin, Light-weight and robust security-aware D2D-assist data transmission protocol for mobile-health systems. IEEE Trans. Inf. Forensics Secur. 12(3), 662–675 (2017)CrossRefGoogle Scholar
  45. 45.
    G. Verma, P. Yu, B.M. Sadler, Physical layer authentication via fingerprint embedding using software-defined radios. IEEE Access 3, 81–88 (2015)CrossRefGoogle Scholar
  46. 46.
    L.Y. Paul, G. Verma, B.M. Sadler, Wireless physical layer authentication via fingerprint embedding. IEEE Commun. Mag. 53(6), 48–53 (2015)CrossRefGoogle Scholar
  47. 47.
    L. Shi, M. Li, S. Yu, J. Yuan, BANA: body area network authentication exploiting channel characteristics. IEEE J. Sel. Areas Commun. 31(9), 1803–1816 (2013)CrossRefGoogle Scholar
  48. 48.
    W. Hou, X. Wang, J.-Y. Chouinard, A. Refaey, Physical layer authentication for mobile systems with time-varying carrier frequency offsets. IEEE Trans. Commun. 62(5), 1658–1667 (2014)CrossRefGoogle Scholar
  49. 49.
    K.M. Borle, B. Chen, W.K. Du, Physical layer spectrum usage authentication in cognitive radio: analysis and implementation. IEEE Trans. Inf. Forensics Secur. 10(10), 2225–2235 (2015)CrossRefGoogle Scholar
  50. 50.
    L. Wang, H. Wu, G.L. Stüber, Cooperative jamming-aided secrecy enhancement in P2P communications with social interaction constraints. IEEE Trans. Veh. Technol. 66(2), 1144–1158 (2017)CrossRefGoogle Scholar
  51. 51.
    W. Wang, K.C. Teh, K.H. Li, Enhanced physical layer security in D2D spectrum sharing networks. IEEE Wirel. Commun. Lett. 6(1), 106–109 (2017)Google Scholar
  52. 52.
    Z. Shu, Y. Qian, S. Ci, On physical layer security for cognitive radio networks. IEEE Netw. 27(3), 28–33 (2013)CrossRefGoogle Scholar
  53. 53.
    L. Liu, R. Zhang, K.-C. Chua, Secrecy wireless information and power transfer with miso beamforming, in Global Communications Conference (GLOBECOM), 2013 IEEE (IEEE, 2013), pp. 1831–1836Google Scholar
  54. 54.
    F. Jameel, D.N.K. Jayakody, M.F. Flanagan, C. Tellambura, Secure communication for separated and integrated receiver architectures in SWIPT, in IEEE Wireless Communications and Networking Conference (WCNC), 2018, pp. 1–6Google Scholar
  55. 55.
    I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D.W.K. Ng, R. Schober, Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014)CrossRefGoogle Scholar
  56. 56.
    H. Ju, R. Zhang, Optimal resource allocation in full-duplex wireless-powered communication network. IEEE Trans. Commun. 62(10), 3528–3540 (2014)CrossRefGoogle Scholar
  57. 57.
    O. Taghizadeh, A. Zamani, R. Mathar, Physical-layer security for simultaneous information and power transfer in full-duplex multi-user networks, in Proceedings of the 20th International ITG Workshop on Smart Antennas (WSA 2016) (VDE, 2016), pp. 1–8Google Scholar
  58. 58.
    Y. Bi, H. Chen, Accumulate and jam: towards secure communication via a wireless-powered full-duplex jammer. IEEE J. Sel. Top. Sign. Proces. 10(8), 1538–1550 (2016)CrossRefGoogle Scholar
  59. 59.
    W. Wu, B. Wang, Z. Deng, H. Zhang, Secure beamforming for full-duplex wireless powered communication systems with self-energy recycling. IEEE Wirel. Commun. Lett. 6(2), 146–149 (2017)CrossRefGoogle Scholar
  60. 60.
    B. Yang, W. Wang, B. Yao, Q. Yin, Destination assisted secret wireless communication with cooperative helpers. IEEE Signal Process Lett. 20(11), 1030–1033 (2013)CrossRefGoogle Scholar
  61. 61.
    Y. Liu, A.P. Petropulu, H.V. Poor, Joint decode-and-forward and jamming for wireless physical layer security with destination assistance, in Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (IEEE, 2011), pp. 109–113Google Scholar
  62. 62.
    Y. Liu, A.P. Petropulu, Relay selection and scaling law in destination assisted physical layer secrecy systems, in Statistical Signal Processing Workshop (SSP), 2012 IEEE (IEEE, 2012), pp. 381–384Google Scholar
  63. 63.
    Y. Liu, J. Li, A.P. Petropulu, Destination assisted cooperative jamming for wireless physical-layer security. IEEE Trans. Inf. Forensics Secur. 8, 682–694 (2013)CrossRefGoogle Scholar
  64. 64.
    S. Luo, J. Li, A.P. Petropulu, Uncoordinated cooperative jamming for secret communications. IEEE Trans. Inf. Forensics Secur. 8(7), 1081–1090 (2013)CrossRefGoogle Scholar
  65. 65.
    S. Luo, J. Li, A. Petropulu, Outage constrained secrecy rate maximization using cooperative jamming, in Statistical Signal Processing Workshop (SSP), 2012 IEEE (IEEE, 2012), pp. 389–392Google Scholar
  66. 66.
    W. Aman, G.A.S. Sidhu, T. Jabeen, F. Gao, S. Jin, Enhancing physical layer security in dual-hop multiuser transmission, in Wireless Communications and Networking Conference (WCNC) (IEEE, 2016), pp. 1–6Google Scholar
  67. 67.
    Z. Ding, Z. Ma, P. Fan, Asymptotic studies for the impact of antenna selection on secure two-way relaying communications with artificial noise. IEEE Trans. Wirel. Commun. 13(4), 2189–2203 (2014)CrossRefGoogle Scholar
  68. 68.
    Y. Tang, J. Xiong, D. Ma, X. Zhang, Robust artificial noise aided transmit design for MISO wiretap channels with channel uncertainty. IEEE Commun. Lett. 17(11), 2096–2099 (2013)CrossRefGoogle Scholar
  69. 69.
    W. Li, M. Ghogho, B. Chen, C. Xiong, Secure communication via sending artificial noise by the receiver: outage secrecy capacity/region analysis. IEEE Commun. Lett. 16(10), 1628–1631 (2012)CrossRefGoogle Scholar
  70. 70.
    S.H. Tsai, H.V. Poor, Power allocation for artificial-noise secure MIMO precoding systems. IEEE Trans. Signal Process. 62(13), 3479–3493 (2014)MathSciNetCrossRefGoogle Scholar
  71. 71.
    C. Zhong, H.A. Suraweera, G. Zheng, I. Krikidis, Z. Zhang, Wireless information and power transfer with full duplex relaying. IEEE Trans. Commun. 62(10), 3447–3461 (2014)CrossRefGoogle Scholar
  72. 72.
    X. Zhou, M.R. McKay, B. Maham, A. Hjorungnes, Rethinking the secrecy outage formulation: a secure transmission design perspective. IEEE Commun. Lett. 15(3), 302–304 (2011)CrossRefGoogle Scholar
  73. 73.
    X. Zhou, Y. Zhang, L. Song, Physical Layer Security in Wireless Communications (CRC Press, Baton Rouge, 2016)Google Scholar
  74. 74.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, Amsterdam, 2014)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Furqan Jameel
    • 1
  • Muhammad Awais Javed
    • 2
  • Dushantha Nalin K. Jayakody
    • 3
    • 4
  1. 1.Faculty of Information TechnologyUniversity of JyväskyläJyväskyläFinland
  2. 2.Department of Electrical EngineeringCOMSATS UniversityIslamabadPakistan
  3. 3.School of Computer Science and RoboticNational Research Tomsk Polytechnic UniversityTomsk, The Tomsk AreaRussia
  4. 4.School of Postgraduate StudiesSri Lanka Technological UniversityPadukkaSri Lanka

Personalised recommendations