Advertisement

Physical Layer Security in 5G Hybrid Heterogeneous Networks

  • Anum Umer
  • Syed Ali HassanEmail author
Chapter

Abstract

Data security has been one of the critical challenges to wireless networks since their inception till date. Researchers around the globe have been gearing up for new technologies of communications, and many sophisticated techniques have been under rigorous research to pave the way for fifth-generation (5G) networks. These include massive multi-antenna systems and the use of millimeter wave (mmW) spectrum to form heterogeneous networks (HetNets) in true sense. However, data security at the physical layer has been a threat for reliable communications as malicious users/devices can intrude the link. This chapter provides a physical layer security perspective of a massive multiple-input multiple-output (MIMO)-enabled HetNet where mmW spectrum is also under utilization. The chapter provides an insight into the secrecy outage and secrecy rates of the users when their security is breached by malicious users around. Toward the end, future works in this area are provided.

Keywords

Physical layer security Massive MIMO Millimeter wave Secrecy spectrum efficiency Secrecy outage 

References

  1. 1.
    J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Zhang, X. Ge, Q. Li, M. Guizani, Y. Zhang, 5G millimeter-wave antenna array: design and challenges. IEEE Wirel. Commun. 24(2), 106–112 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Ye, X. Ge, G. Mao, Y. Zhong, 5G ultra-dense networks with non-uniform distributed users. IEEE Trans. Veh. Technol. 67(3), 2660–2670 (2018)CrossRefGoogle Scholar
  4. 4.
    X. Ge, R. Zi, H. Wang, J. Zhang, M. Jo, Multi-user massive MIMO communication systems based on irregular antenna arrays. IEEE Trans. Wirel. Commun. 15(8), 5287–5301 (2016)CrossRefGoogle Scholar
  5. 5.
    R.W. Heath, T. Bai, R. Vaze, Analysis of blockage effects on urban cellular networks. IEEE Trans. Wirel. Commun. 13(9), 5070–5083 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Turgut, M.C. Gursoy, Energy efficiency in relay-assisted mmW cellular networks, in IEEE 84th Vehicular Technology Conference (VTC-Fall), Sept 2016, pp. 1–5Google Scholar
  7. 7.
    M. Ding, P. Wang, D. Lopez-Perez, G. Mao, Z. Lin, Performance impact of LoS and NLoS transmissions in dense cellular networks. IEEE Trans. Wirel. Commun. 15(3), 2365–2380 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Wang, T. Zhang, X. Xia, Secure MISO wiretap channels with multi-antenna passive eavesdropper: artificial noise vs. artificial fast fading. IEEE Trans. Wirel. Commun. 14(1), 94–106 (2015)Google Scholar
  9. 9.
    Y. Liang, H.V. Poor, S. Shamai, Secure communication over fading channels. IEEE Trans. Inf. Theory 54(6), 2470–2492 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Wang, N. Yang, M. Elkashlan, P.L. Yeoh, J. Yuan, Physical layer security of maximal ratio combining in two-wave with diffuse power fading channels. IEEE Trans. Inf. Forensics Secur. 9(2), 247–258 (2014)CrossRefGoogle Scholar
  11. 11.
    H.M. Wang, M. Luo, Q. Yin, X.G. Xia, Hybrid cooperative beamforming and jamming for physical-layer security of two-way relay networks. IEEE Trans. Inf. Forensics Secur. 8(12), 2007–2020 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Lv, H. Gao, S. Yang, Secrecy transmit beamforming for heterogeneous networks. IEEE J. Sel. Areas Commun. 33(6), 1154–1170 (2015)CrossRefGoogle Scholar
  13. 13.
    H. Wu, X. Tao, N. Li, J. Xu, Secrecy outage probability in multi-RAT heterogeneous networks. IEEE Commun. Lett. 20(1), 53–56 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Wang, T. Zheng, J. Yuan, D. Towsley, M.H. Lee, Physical layer security in heterogeneous cellular networks. IEEE Trans. Commun. 64(3), 1204–1219 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Deng, L. Wang, K.K. Wong, A. Nallanathan, M. Elkashlan, S. Lambotharan, Safeguarding massive MIMO aided hetnets using physical layer security, in Proceedings of Wireless Communications and Signal Processing, 2015, pp. 1–5Google Scholar
  16. 16.
    J. Wang, J. Lee, F. Wang, T.Q.S. Quek, Jamming-aided secure communication in massive MIMO rician channels. IEEE Trans. Wirel. Commun. 14(12), 6854–6868 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Xu, X. Tao, F. Yang, H. Wu, Enhancing secured coverage with COMP transmission in heterogeneous cellular networks. IEEE Commun. Lett. 20(11), 2272–2275 (2016)CrossRefGoogle Scholar
  18. 18.
    L. Wang, K.K. Wong, M. Elkashlan, A. Nallanathan, S. Lambotharan, Secrecy and energy efficiency in massive MIMO aided heterogeneous C-RAN: a new look at interference. IEEE J. Sel. Top. Sign. Proces. 10(8), 1375–1389 (2016)CrossRefGoogle Scholar
  19. 19.
    V. Sharma, D. N. K. Jayakody, I. You, R. Kumar, J. Li, Secure and efficient context-aware localization of drones in urban scenarios. IEEE Commun. Mag. 56(4), 120–128 (2018)CrossRefGoogle Scholar
  20. 20.
    V. Sharma et al., Secure and energy efficient handover in fog networks using blockchain-based DMM. IEEE Commun. Mag. 56, 22–31 (2018)CrossRefGoogle Scholar
  21. 21.
    F. Jameel et al., Secure communication for separated and integrated receiver architectures in SWIPT. IEEE Wirel. Commun. Netw. Conf. 2018, 1–6 (2018)Google Scholar
  22. 22.
    L. Wang, M. Elkashlan, T.Q. Duong, R.W. Heath Jr., Secure communication in cellular networks: the benefits of millimeter wave mobile broadband, in IEEE 15th International Workshop on Signal Processing and Advances in Wireless Communication (SPAWC), 2014, pp. 115–119Google Scholar
  23. 23.
    S. Vuppala, S. Biswas, T. Ratnarajah, An analysis on secure communication in millimeter/micro-wave hybrid networks. IEEE Trans. Commun. 64(8), 3507–3519 (2016)CrossRefGoogle Scholar
  24. 24.
    C. Wang, H.M. Wang, Physical layer security in millimeter wave cellular networks. IEEE Trans. Wirel. Commun. 15(8), 5569–5585 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Gong, C. Xing, Z. Fei, S. Ma, Millimeter-wave secrecy beamforming designs for two-way amplify-and-forward MIMO relaying networks. IEEE Trans. Veh. Technol. Early Access Articles, 66, 1–12 (2016)Google Scholar
  26. 26.
    A. Umer, S.A. Hassan, H. Pervaiz, Q. Ni, L. Musavian, Coverage and rate analysis for massive MIMO-enabled heterogeneous networks with millimeter wave small cells, in IEEE 85th Vehicular Technology Conference (VTC Spring), 2017, Sydney, pp. 1–5Google Scholar
  27. 27.
    A. Umer, S.A. Hassan, H. Pervaiz, Q. Ni, L. Musavian, S.H. Ahmed, Secrecy outage analysis for massive MIMO-enabled multi-tier 5G hybrid hetnets, in 2018 IEEE International Conference on Communications Workshops, 2018, Kansas City, pp. 1–6Google Scholar
  28. 28.
    Y. Hao, Q. Ni, H. Li, S. Hou, On the energy and spectral efficiency tradeoff in massive MIMO enabled hetnets with capacity-constrained Backhaul links. IEEE Trans. Commun. (2017, in press).  https://doi.org/10.1109/TCOMM.2017.2730867 CrossRefGoogle Scholar
  29. 29.
    K. Hosseini, W. Yu, R.S. Adve, Large-scale mimo versus network mimo for multicell interference mitigation. IEEE J. Sel. Top. Sign. Proces. 8(5), 930–941 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Omar, M. Anjum, S.A. Hassan, H. Pervaiz, Q. Ni, Performance analysis of hybrid 5G cellular networks exploiting mmW capabilities in suburban areas, in IEEE Internation Conference on Communications, Kuala Lumpur, 2016Google Scholar
  31. 31.
    E. Turgut, M.C. Gursoy, Coverage in heterogeneous downlink millimeter wave cellular networks. IEEE Trans. Commun. 65, 4463–4477 (2017)Google Scholar
  32. 32.
    C. Yang, J. Li, Q. Ni, A. Anpalagan, M. Guizani, Interference-aware energy efficiency maximization in 5G ultra-dense networks. IEEE Trans. Commun. 65(2), 728–739 (2017)CrossRefGoogle Scholar
  33. 33.
    A.D. Wyner, The wire-tap channel. Bell Labs Tech. J. 54(8), 1355–1387 (1975)MathSciNetCrossRefGoogle Scholar
  34. 34.
    X. Zhang, X. Zhou, M.R. McKay, Enhancing secrecy with multi-antenna transmission in wireless ad hoc networks. IEEE Trans. Inf. Forensics Secur. 8(11), 1802–1814 (2013)CrossRefGoogle Scholar
  35. 35.
    C. Ma, J. Liu, X. Tian, H. Yu, Y. Cui, X. Wang, Interference exploitation in D2D-enabled cellular networks: a secrecy perspective. IEEE Trans. Commun. 63(1), 229–242 (2015)Google Scholar
  36. 36.
    P.C. Pinto, J. Barros, M.Z. Win, Secure communication in stochastic wireless networks–part I: connectivity. IEEE Trans. Inf. Forensics Secur. 7(1), 125–138 (2012)CrossRefGoogle Scholar
  37. 37.
    T. Bai, R.W. Heath, Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 14(2), 1100–1114 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Pervaiz, L. Musavian, Q. Ni, Z. Ding, Energy and spectrum efficient transmission techniques under QoS constraints toward green heterogeneous networks. IEEE Access 3, 1655–1671 (2015)CrossRefGoogle Scholar
  39. 39.
    G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson et al., How much energy is needed to run a wireless network? IEEE Wirel. Commun. 18(5), 40–49 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer Science (SEECS)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations