A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

  • Gaurav Choudhary
  • Vishal Sharma


The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, “CATMOSIS,” which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.


5G Security Osmotic computing Catalytic computing 


  1. 1.
    E. Hossain, M. Rasti, H. Tabassum, A. Abdelnasser, Evolution toward 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wirel. Commun. 21(3), 118–127 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Ge, H. Cheng, M. Guizani, T. Han, 5G wireless backhaul networks: challenges and research advances. IEEE Netw. 28(6), 6–11 (2014)CrossRefGoogle Scholar
  3. 3.
    V. Sharma, J.D. Lim, J.N. Kim, I. You, SACA: Self-Aware Communication Architecture for IoT Using Mobile Fog Servers. Mobile Information Systems. 2017; (2017)Google Scholar
  4. 4.
    P. Rost, C.J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, D. Wübben, Cloud technologies for flexible 5G radio access networks. IEEE Commun. Mag. 52(5), 68–76 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks. arXiv preprint arXiv:1511.08610 (2015)Google Scholar
  6. 6.
    V. Sharma, R. Sabatini, S. Ramasamy, UAVs assisted delay optimization in heterogeneous wireless networks. IEEE Commun. Lett. 20(12), 2526–2529 (2016)CrossRefGoogle Scholar
  7. 7.
    V. Sharma, R. Kumar, P.S. Rana, Self-healing neural model for stabilization against failures over networked UAVs. IEEE Commun. Lett. 19(11), 2013–2016 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, X. Chai, K. Long, A.V. Vasilakos, L. Hanzo, Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Commun. Mag. 53(5), 128–137 (2015)CrossRefGoogle Scholar
  9. 9.
    A.I. Sulyman, A.T. Nassar, M.K. Samimi, G.R. MacCartney, T.S. Rappaport, A. Alsanie, Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 52(9), 78–86 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Shin, V. Sharma, J. Kim, S. Kwon, I. You, Secure and efficient protocol for route optimization in PMIPv6-based smart home IoT networks. IEEE Access. 5, 11100–11117 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Elshaer, F. Boccardi, M. Dohler, R. Irmer, Downlink and uplink decoupling: a disruptive architectural design for 5G networks. In Global Communications Conference (GLOBECOM), 2014 IEEE 2014 Dec 8 (pp. 1798–1803). IEEEGoogle Scholar
  12. 12.
    V. Sharma, G. Choudhary, I. You, J.D. Lim, J.N. Kim, Self-enforcing game theory-based resource allocation for LoRaWAN assisted public safety communications. arXiv preprint arXiv:1804.07204 (2018)Google Scholar
  13. 13.
    T.D. Perera, D.N. Jayakody, S. Chatzinotas, V. Sharma, Wireless information and power transfer: issues, advances, and challenges. In Vehicular Technology Conference (VTC-Fall), 2017 IEEE 86th 2017 Sep 24 (pp. 1–7). IEEEGoogle Scholar
  14. 14.
    M.N. Tehrani, M. Uysal, H. Yanikomeroglu, Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52(5), 86–92 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Duan, X. Wang, Authentication handover and privacy protection in 5G hetnets using software-defined networking. IEEE Commun. Mag. 53(4), 28–35 (2015)CrossRefGoogle Scholar
  16. 16.
    V. Sharma, K. Lee, S. Kwon, J. Kim, H. Park, K. Yim, S.Y. Lee, A consensus framework for reliability and mitigation of zero-day attacks in IoT. Security and Communication Networks. 2017; (2017)Google Scholar
  17. 17.
    V. Sharma, I. You, G. Kul, Socializing drones for inter-service operability in ultra-dense wireless networks using Blockchain. In Proceedings of the 2017 International Workshop on Managing Insider Security Threats 2017 Oct 30 (pp. 81–84). ACMGoogle Scholar
  18. 18.
    M. Chen, Y. Qian, S. Mao, W. Tang, X. Yang, Software-defined mobile networks security. Mobile Netw. Appl. 21(5), 729–743 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Sun, M. Kadoch, L. Gong, B. Rong, Integrating network function virtualization with SDR and SDN for 4G/5G networks. IEEE Netw. 29(3), 54–59 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Xiao, L. Gong, M. Kadoch, Opportunistic multicast NOMA with security concerns in a 5G massive MIMO system. IEEE Commun. Mag. 56(3), 91–95 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Wu, A. Khisti, C. Xiao, G. Caire, K.K. Wong, X. Gao, A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 36, 679–695 (2018)CrossRefGoogle Scholar
  22. 22.
    V. Sharma, I. You, R. Kumar, ISMA: Intelligent sensing model for anomalies detection in cross platform OSNs with a case study on IoT. IEEE Access 5, 3284–3301 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Condoluci, M.A. Lema, T. Mahmoodi, M. Dohler, 5g IoT industry verticals and network requirements. In Powering the Internet of Things With 5G Networks 2018 (pp. 148–175). IGI GlobalGoogle Scholar
  24. 24.
    V. Sharma, I. You, D.N. Jayakody, M. Atiquzzaman, Cooperative trust relaying and privacy preservation via edge-crowdsourcing in social Internet of Things. Future Generation Computer Systems. 2017 Dec 28Google Scholar
  25. 25.
    M. Alenezi, K. Almustafa, M. Hussein, On virtualization and security-awareness performance analysis in 5G cellular networks. J. Eng. Sci. Technol. Rev. 11(1), 1–9 (2018)Google Scholar
  26. 26.
    D. Schinianakis, Alternative security options in the 5G and IoT era. IEEE Circuits Syst. Mag. 17(4), 6–28 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.H. Lee, A.S. Wang, Y.D. Liao, T.W. Lin, Y.J. Chi, C.C. Wong, N. Shinohara, Q. Yuan, Q. Chen, Wireless power IoT system using polarization switch antenna as polling protocol for 5G mobile network. In Wireless Power Transfer Conference (WPTC), 2017 IEEE 2017 May 10 (pp. 1–3). IEEEGoogle Scholar
  28. 28.
    A. Costanzo, D. Masotti, Energizing 5G: near-and far-field wireless energy and data trantransfer as an enabling technology for the 5G IoT. IEEE Microw. Mag. 18(3), 125–136 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Rajaram, D.N. Jayakody, K. Srinivasan, B. Chen, V. Sharma, Opportunistic-harvesting: RF wireless power transfer scheme for multiple access relays system. IEEE Access. 5, 16084–16099 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Guan, V. Sharma, I. You, M. Atiquzzaman, Extension of MIH to support FPMIPv6 for optimized heterogeneous handover. arXiv preprint arXiv:1705.09835 (2017)Google Scholar
  31. 31.
    M. Villari, M. Fazio, S. Dustdar, O. Rana, R. Ranjan, Osmotic computing: a new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)CrossRefGoogle Scholar
  32. 32.
    V. Sharma, K. Srinivasan, D.N. Jayakody, O. Rana, R. Kumar, Managing service-heterogeneity using osmotic computing. arXiv preprint arXiv:1704.04213 (2017)Google Scholar
  33. 33.
    Maksimović M. The Role of Osmotic Computing in Internet of Things.Infoteh-Jahorina.2018 MarchGoogle Scholar
  34. 34.
    V. Sharma, I. You, R. Kumar, P. Kim, Computational offloading for efficient trust management in pervasive online social networks using osmotic computing. IEEE Access. 5, 5084–5103 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Nardelli, S. Nastic, S. Dustdar, M. Villari, R. Ranjan, Osmotic flow: Osmotic computing+ IoT workflow. IEEE Cloud Comput. 4(2), 68–75 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Morshed, P.P. Jayaraman, T. Sellis, D. Georgakopoulos, M. Villari, R. Ranjan, Deep osmosis: holistic distributed deep learning in osmotic computing. IEEE Cloud Comput. 4(6), 22–32 (2018)CrossRefGoogle Scholar
  37. 37.
    T. Rausch, S. Dustdar, R. Ranjan, Osmotic message-oriented middleware for the internet of things. IEEE Cloud Comput. 5(2), 17–25 (2018)CrossRefGoogle Scholar
  38. 38.
    A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, M. Villari, Towards osmotic computing: analyzing overlay network solutions to optimize the deployment of container-based microservices in fog, edge and IoT environments. In Fog and Edge Computing (ICFEC), 2018 IEEE 2nd International Conference on 2018 May 1 (pp. 1–10). IEEEGoogle Scholar
  39. 39.
    V. Sharma, I. You, R. Kumar, Resource-based mobility management for video users in 5G using catalytic computing. Comput. Commun. 118, 120–139 (2018)CrossRefGoogle Scholar
  40. 40.
    G. Chopra, R.K. Jha, S. Jain, A survey on ultra-dense network and emerging technologies: security challenges and possible solutions. J. Netw. Comput. Appl. 95, 54–78 (2017)CrossRefGoogle Scholar
  41. 41.
    M.A. Ferrag, L. Maglaras, A. Argyriou, D. Kosmanos, H. Janicke, Security for 4G and 5G cellular networks: a survey of existing authentication and privacy-preserving schemes. J. Netw. Comput. Appl. 101, 55–82 (2017)CrossRefGoogle Scholar
  42. 42.
    D. Fang, Y. Qian, R.Q. Hu, Security for 5G mobile wireless networks. IEEE Access. 6, 4850–4874 (2018)CrossRefGoogle Scholar
  43. 43.
    H. Lin, Z. Yan, Y. Chen, L. Zhang, A survey on network security-related data collection technologies. IEEE Access. 6, 18345–18365 (2018)CrossRefGoogle Scholar
  44. 44.
    D. Rupprecht, A. Dabrowski, T. Holz, E. Weippl, C. Pöpper, On security research towards future mobile network generations. IEEE Commun. Surv. Tutorials 20, 2518–2542 (2018)CrossRefGoogle Scholar
  45. 45.
    I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, A. Gurtov, Overview of 5G security challenges and solutions. IEEE Commun. Standards Mag. 2(1), 36–43 (2018)CrossRefGoogle Scholar
  46. 46.
    Y. Gao, S. Hu, W. Tang, Y. Li, Y. Sun, D. Huang, S. Cheng, X. Li, Physical layer security in 5G based large scale social networks: opportunities and challenges. IEEE Access 6, 26350–26357 (2018)CrossRefGoogle Scholar
  47. 47.
    X. Ji, K. Huang, L. Jin, H. Tang, C. Liu, Z. Zhong, W. You, X. Xu, H. Zhao, J. Wu, M. Yi, Overview of 5G security technology. SCIENCE CHINA Inf. Sci. 61(8), 081301 (2018)CrossRefGoogle Scholar
  48. 48.
    N. Panwar, S. Sharma, A.K. Singh, A survey on 5G: the next generation of mobile communication. Phys. Commun. 18, 64–84 (2016)CrossRefGoogle Scholar
  49. 49.
    N.T. Le, M.A. Hossain, A. Islam, D.Y. Kim, Y.J. Choi, Y.M. Jang. Survey of promising technologies for 5G networks. Mobile information systems. 2016Google Scholar
  50. 50.
    R. Yu, J. Ding, X. Huang, M.T. Zhou, S. Gjessing, Y. Zhang, Optimal resource sharing in 5G-enabled vehicular networks: a matrix game approach. IEEE Trans. Veh. Technol. 65(10), 7844–7856 (2016)CrossRefGoogle Scholar
  51. 51.
    N.C. Luong, P. Wang, D. Niyato, Y.C. Liang, F. Hou, Z. Han. Applications of economic and pricing models for resource management in 5G wireless networks: a survey. arXiv preprint arXiv:1710.04771 (2017)Google Scholar
  52. 52.
    H. Zhang, H. Xing, J. Cheng, A. Nallanathan, V.C. Leung, Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Trans. Industr. Inf. 12(5), 1714–1725 (2016)CrossRefGoogle Scholar
  53. 53.
    M.R. Abedi, N. Mokari, M.R. Javan, H. Yanikomeroglu, Limited rate feedback scheme for resource allocation in secure relay-assisted OFDMA networks. IEEE Trans. Wirel. Commun. 15(4), 2604–2618 (2016)CrossRefGoogle Scholar
  54. 54.
    A.M. Akhtar, X. Wang, L. Hanzo, Synergistic spectrum sharing in 5G HetNets: a harmonized SDN-enabled approach. IEEE Commun. Mag. 54(1), 40–47 (2016)CrossRefGoogle Scholar
  55. 55.
    X. Liu, Y. Liu, X. Wang, H. Lin, Highly efficient 3-D resource allocation techniques in 5G for NOMA-enabled massive MIMO and relaying systems. IEEE J. Sel. Areas Commun. 35(12), 2785–2797 (2017)CrossRefGoogle Scholar
  56. 56.
    H. Yang, B.C. Seet, S.F. Hasan, P.H. Chong, M.Y. Chung, Radio resource allocation for D2D-enabled massive machine communication in the 5G era. In Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl C 2016 Aug 8 (pp. 55–60). IEEEGoogle Scholar
  57. 57.
    H. Zhang, N. Liu, X. Chu, K. Long, A.H. Aghvami, V.C. Leung, Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun. Mag. 55(8), 138–145 (2017)CrossRefGoogle Scholar
  58. 58.
    K. Samdanis, X. Costa-Perez, V. Sciancalepore, From network sharing to multi-tenancy: the 5G network slice broker. IEEE Commun. Mag. 54(7), 32–39 (2016)CrossRefGoogle Scholar
  59. 59.
    B. Wang, K. Huang, X. Xu, L. Jin, Z. Zhong, Y. Wang, Resource allocation for secure communication in $ K $-tier heterogeneous cellular networks: a spatial-temporal perspective. IEEE Access. 6, 772–782 (2018)CrossRefGoogle Scholar
  60. 60.
    J. Li, N. Zhang, Q. Ye, W. Shi, W. Zhuang, X. Shen, Joint resource allocation and online virtual network embedding for 5G networks. In GLOBECOM 2017–2017 IEEE Global Communications Conference 2017 Dec 4 (pp. 1–6). IEEEGoogle Scholar
  61. 61.
    I. Alqerm, B. Shihada, Sophisticated online learning scheme for green resource allocation in 5g heterogeneous cloud radio access networks. IEEE Trans. Mob. Comput. 17, 2423–2437 (2018)CrossRefGoogle Scholar
  62. 62.
    H. Zhang, N. Yang, K. Long, M. Pan, G.K. Karagiannidis, V.C. Leung, Secure communications in NOMA system: Subcarrier assignment and power allocation. IEEE J. Sel. Areas Commun. 36(7), 1441–1452 (2018)Google Scholar
  63. 63.
    I.P. Belikaidis, A. Georgakopoulos, E. Kosmatos, V. Frascolla, P. Demestichas, Management of 3.5-GHz spectrum in 5G dense networks: a hierarchical radio resource management scheme. IEEE Veh. Technol. Mag. 13(2), 57–64 (2018)CrossRefGoogle Scholar
  64. 64.
    A. Martin, J. Egaña, J. Flórez, J. Montalbán, I.G. Olaizola, M. Quartulli, R. Viola, M. Zorrilla, Network resource allocation system for QoE-aware delivery of media services in 5G networks. IEEE Trans. Broadcast. 64(2), 561–574 (2018)CrossRefGoogle Scholar
  65. 65.
    Y. He, F.R. Yu, N. Zhao, H. Yin, Secure social networks in 5G systems with mobile edge computing, caching, and device-to-device communications. IEEE Wirel. Commun. 25(3), 103–109 (2018)CrossRefGoogle Scholar
  66. 66.
    L. Tan, Resource Allocation and Performance Optimization in Communication Networks and the Internet (CRC Press, Boca Raton, 2017)CrossRefGoogle Scholar
  67. 67.
    M. Jiang, M. Condoluci, T. Mahmoodi, Network slicing management & prioritization in 5G mobile systems. In European wireless 2016 May 18 (pp. 1–6)Google Scholar
  68. 68.
    AlQerm I, Shihada B. Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks. In IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 2017 Oct 8 (pp. 1–7)Google Scholar
  69. 69.
    X. Duan, Software-defined Networking enabled Resource Management and Security Provsioning in 5G Heterogeneous Networks. Electronic Thesis and Dissertation Repository. 4666. [Last Accessed November 2018]
  70. 70.
    Y. Zhu, Efficient resource allocation for 5G hybrid wireless networks (Doctoral dissertation, UCL (University College London))Google Scholar
  71. 71.
    V. Sharma, I. You, F.Y. Leu, M. Atiquzzaman, Secure and efficient protocol for fast handover in 5G mobile Xhaul networks. J. Netw. Comput. Appl. 102, 38–57 (2018)CrossRefGoogle Scholar
  72. 72.
    I. You, J.H. Lee, SPFP: Ticket-based secure handover for fast proxy mobile IPv6 in 5G networks. Comput. Netw. 129, 363–372 (2017)CrossRefGoogle Scholar
  73. 73.
    C.I. Fan, J.J. Huang, M.Z. Zhong, R.H. Hsu, W.T. Chen, J. Lee, ReHand: secure region-based fast handover with user anonymity for small cell networks in 5G. arXiv preprint arXiv:1806.03406 (2018)Google Scholar
  74. 74.
    S. Chen, F. Qin, B. Hu, X. Li, Z. Chen, User-centric ultra-dense networks for 5G: challenges, methodologies, and directions. IEEE Wirel. Commun. 23(2), 78–85 (2016)CrossRefGoogle Scholar
  75. 75.
    K. Munir, E. Zahoor, R. Rahim, X. Lagrange, J.H. Lee, Secure and fault-tolerant distributed location management for Intelligent 5G wireless networks. IEEE Access. 6, 18117–18127 (2018)CrossRefGoogle Scholar
  76. 76.
    V. Sharma, I. You, F. Palmieri, D.N. Jayakody, J. Li, Secure and energy-efficient handover in fog networks using blockchain-based DMM. IEEE Commun. Mag. 56(5), 22–31 (2018)CrossRefGoogle Scholar
  77. 77.
    A. Prasad, P. Lundén, M. Moisio, M.A. Uusitalo, Z. Li, Efficient mobility and traffic management for delay tolerant cloud data in 5G networks. In PIMRC 2015 Aug 30 (pp. 1740–1745)Google Scholar
  78. 78.
    R. Kantola, J. Llorente Santos, N. Beijar, Policy-based communications for 5G mobile with customer edge switching. Secur. Commun. Netw. 9(16), 3070–3082 (2016)CrossRefGoogle Scholar
  79. 79.
    M. Kantor, T. Engel, G. Ormazabal, A policy-based per-flow mobility management system design. In Proceedings of the Principles, Systems and Applications on IP Telecommunications 2015 Oct 6 (pp. 35–42). ACMGoogle Scholar
  80. 80.
    A. Compagno, X. Zeng, L. Muscariello, G. Carofiglio, J. Auge, Secure producer mobility in information-centric network. In Proceedings of the 4th ACM Conference on Information-Centric Networking 2017 Sep 26 (pp. 163–169). ACMGoogle Scholar
  81. 81.
    J. Guan, Z. Wei, I. You, GRBC-based network security functions placement scheme in SDS for 5G security. J. Netw. Comput. Appl. 114, 48–56 (2018)CrossRefGoogle Scholar
  82. 82.
    Y. Jung, E. Festijo, M. Peradilla, Joint operation of routing control and group key management for 5G ad hoc D2D networks. In Privacy and Security in Mobile Systems (PRISMS), 2014 International Conference on 2014 May 11 (pp. 1–8). IEEEGoogle Scholar
  83. 83.
    M. Wang, Z. Yan, Security in D2D communications: a review. In Trustcom/BigDataSE/ISPA, 2015 IEEE 2015 Aug 20 (Vol. 1, pp. 1199–1204). IEEEGoogle Scholar
  84. 84.
    V.K. Choyi, A. Abdel-Hamid, Y. Shah, S. Ferdi, A. Brusilovsky, Network slice selection, assignment and routing within 5G Networks. In Standards for Communications and Networking (CSCN), 2016 IEEE Conference on 2016 Oct 31 (pp. 1–7). IEEEGoogle Scholar
  85. 85.
    I.F. Naqvi, A.K. Siddiqui, A. Farooq, IPv6 adoption rate and performance in the 5G wireless internets. In Region 10 Conference (TENCON), 2016 IEEE 2016 Nov 22 (pp. 3850–3858). IEEEGoogle Scholar
  86. 86.
    M. Schmittner, A. Asadi, M. Hollick, SEMUD: secure multi-hop device-to-device communication for 5G public safety networks. In IFIP Networking Conference (IFIP Networking) and Workshops, 2017 2017 Jun 12 (pp. 1–9). IEEEGoogle Scholar
  87. 87.
    Y. Zhao, G. Li, W. Qu, A novel cluster-based ultra-dense network technique for 5G and its security issues. In Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence & Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th Intl 2017 Nov 6 (pp. 362–367). IEEEGoogle Scholar
  88. 88.
    S. Othmen, F. Zarai, A. Belghith, L. Kamoun, Secure Routing Protocol based on Weil Paring for Multi-hop Cellular Network (SRP-MCN). IJCSNS 16(6), 117 (2016)Google Scholar
  89. 89.
    G. Gomez, F.J. Martin-Vega, F.J. Lopez-Martinez, Y. Liu, M. Elkashlan, Uplink NOMA in large-scale systems: coverage and physical layer security. arXiv preprint arXiv:1709.04693 (2017)Google Scholar
  90. 90.
    M. Forouzesh, P. Azmi, N. Mokari, K.K. Wong, Robust physical layer security for power domain non-orthogonal multiple access-based HetNets and HUDNs, SIC avoidance at eavesdroppers. arXiv preprint arXiv:1806.02013 (2018)Google Scholar
  91. 91.
    D. Kapetanovic, G. Zheng, F. Rusek, Physical layer security for massive MIMO: an overview on passive eavesdropping and active attacks. IEEE Commun. Mag. 53(6), 21–27 (2015)CrossRefGoogle Scholar
  92. 92.
    H.M. Wang, T.X. Zheng, J. Yuan, D. Towsley, M.H. Lee, Physical layer security in heterogeneous cellular networks. IEEE Trans. Commun. 64(3), 1204–1219 (2016)CrossRefGoogle Scholar
  93. 93.
    Z. Qin, Y. Liu, Z. Ding, Y. Gao, M. Elkashlan, Physical layer security for 5G non-orthogonal multiple access in large-scale networks. In Communications (ICC), 2016 IEEE International Conference on 2016 May 22 (pp. 1–6). IEEEGoogle Scholar
  94. 94.
    Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, L. Hanzo, Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Trans. Wirel. Commun. 16(3), 1656–1672 (2017)CrossRefGoogle Scholar
  95. 95.
    C. Zhang, J. Ge, Z. Xia, H. Du, Graph theory based cooperative transmission for physical-layer security in 5G large-scale wireless relay networks. IEEE Access 5, 21640–21649 (2017)CrossRefGoogle Scholar
  96. 96.
    J. Chen, L. Yang, M.S. Alouini, Physical layer security for cooperative NOMA systems. IEEE Trans. Veh. Technol. 67(5), 4645–4649 (2018)CrossRefGoogle Scholar
  97. 97.
    F. Pan, Y. Jiang, H. Wen, R. Liao, A. Xu, Physical layer security assisted 5G network security. In Vehicular Technology Conference (VTC-Fall), 2017 IEEE 86th 2017 Sep 24 (pp. 1–5). IEEEGoogle Scholar
  98. 98.
    F. Zhu, F. Gao, H. Lin, S. Jin, J. Zhao, G. Qian, Robust beamforming for physical layer security in BDMA massive MIMO. IEEE J. Sel. Areas Commun. 36, 775–787 (2018)CrossRefGoogle Scholar
  99. 99.
    W.Q. Wang, Z. Zheng, Hybrid MIMO and phased-Array directional modulation for physical layer security in mmWave wireless communications. IEEE J. Sel Areas Commun. 36(7), 1383–1396 (2018)Google Scholar
  100. 100.
    A. Morgado, K.M. Huq, S. Mumtaz, J. Rodriguez, A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digital Commun. Netw. 4(2), 87–97 (2018)CrossRefGoogle Scholar
  101. 101.
    J. Cheng, W. Chen, F. Tao, C.L. Lin, Industrial IoT in 5G environment towards smart manufacturing. J. Ind. Inf. Integr. 10, 10–19 (2018)Google Scholar
  102. 102.
    I. Mavromatis, A. Tassi, G. Rigazzi, R.J. Piechocki, A. Nix, Multi-radio 5G architecture for connected and autonomous vehicles: application and design insights. arXiv preprint arXiv:1801.09510 (2018)Google Scholar
  103. 103.
    P.K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)CrossRefGoogle Scholar
  104. 104.
    Q. Han, S. Liang, H. Zhang, Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world. IEEE Netw. 29(2), 40–45 (2015)CrossRefGoogle Scholar
  105. 105.
    M.A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, M. Dohler, Business case and technology analysis for 5g low latency applications. IEEE Access 5, 5917–5935 (2017)Google Scholar
  106. 106.
    F.B. Saghezchi, G. Mantas, J. Ribeiro, M. Al-Rawi, S. Mumtaz, J. Rodriguez, Towards a secure network architecture for smart grids in 5G era. In Wireless Communications and Mobile Computing Conference (IWCMC), 2017 13th International 2017 Jun 26 (pp. 121–126). IEEEGoogle Scholar
  107. 107.
    G. Arfaoui, P. Bisson, R. Blom, R. Borgaonkar, H. Englund, E. Félix, F. Klaedtke, P.K. Nakarmi, M. Näslund, P. O’Hanlon, J. Papay, A security architecture for 5G networks. IEEE Access 6, 22466–22479 (2018)CrossRefGoogle Scholar
  108. 108.
    J. Santos, T. Wauters, B. Volckaert, F. DeTurck, Fog computing: Enabling the management and orchestration of smart city applications in 5g networks. Entropy 20(1), 4 (2017)CrossRefGoogle Scholar
  109. 109.
    A.H. Celdrán, M.G. Pérez, F.J. Clemente, G.M. Pérez, Towards the autonomous provision of self-protection capabilities in 5G networks. J. Ambient. Intell. Humaniz. Comput. 2018, 1–4Google Scholar
  110. 110.
    J. Santos, P. Leroux, T. Wauters, B. Volckaert, F. De Turck, Anomaly detection for Smart City applications over 5G low power wide area networks. In NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium 2018 Apr 23. IEEEGoogle Scholar
  111. 111.
    M. Lichtman, R.M. Rao, V. Marojevic, J.H. Reed, R.P. Jover, 5G NR jamming, spoofing, and sniffing: threat assessment and mitigation. arXiv preprint arXiv:1803.03845 (2018)Google Scholar
  112. 112.
    P. Schneider, G. Horn, Towards 5G security. In Trustcom/BigDataSE/ISPA, 2015 IEEE 2015 Aug 20 (Vol. 1, pp. 1165–1170). IEEEGoogle Scholar
  113. 113.
    S. Luo, J. Wu, J. Li, L. Guo, B. Pei, Toward vulnerability assessment for 5G mobile communication networks. In Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE International Conference on 2015 Dec 19 (pp. 72–76). IEEEGoogle Scholar
  114. 114.
    A. Mohseni-Ejiyeh, M. Ashouri-Talouki, SeVR+: Secure and privacy-aware cloud-assisted video reporting service for 5G vehicular networks. In Electrical Engineering (ICEE), 2017 Iranian Conference on 2017 May 2 (pp. 2159–2164). IEEEGoogle Scholar
  115. 115.
    C. Bouras, A. Kollia, A. Papazois, Teaching network security in mobile 5G using ONOS SDN controller. In Ubiquitous and Future Networks (ICUFN), 2017 Ninth International Conference on 2017 Jul 4 (pp. 465–470). IEEEGoogle Scholar
  116. 116.
    G. Mantas, N. Komninos, J. Rodriuez, E. Logota, H. Marques, in Fundamentals of 5G mobile networks, ed. J. Rodriguez. Security for 5G communications (John Wiley & Sons, Ltd.), p. 207–220. ISBN 9781118867464Google Scholar
  117. 117.
    M. Svensson, N. Paladi, R. Giustolisi, 5G: Towards Secure Ubiquitous Connectivity Beyond 2020, Kista (Sweden: Swedish Institute of Computer Science, 2015), p. 24. SICS Technical Report, ISSN 1100-3154; 2015:08.Google Scholar
  118. 118.
    A. Gupta, R.K. Jha, S. Jain, Attack modeling and intrusion detection system for 5G wireless communication network. Int. J. Commun. Syst. 30(10), e3237 (2017)CrossRefGoogle Scholar
  119. 119.
    I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, A. Gurtov, 5G security: analysis of threats and solutions. In Standards for Communications and Networking (CSCN), 2017 IEEE Conference on 2017 Sep 18 (pp. 193–199). IEEEGoogle Scholar
  120. 120.
    N.G. Alliance. 5G Security Recommendations Package 2: Network Slicing. v1_0.pdf. Page (1–12) Version 1.0, 27 –April-2016 [Last Accessed November 2018]
  121. 121.
    C. Felita, M. Suryanegara, 5G key technologies: identifying innovation opportunity. In QiR (Quality in Research), 2013 International Conference on 2013 Jun 25 (pp. 235–238). IEEEGoogle Scholar
  122. 122.
    N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, M. Di Renzo, Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag. 53(4), 20–27 (2015)CrossRefGoogle Scholar
  123. 123.
    L. Sun, Q. Du, Physical layer security with its applications in 5G networks: a review. China Commun. 14(12), 1–4 (2017)CrossRefGoogle Scholar
  124. 124.
    K. Gai, M. Qiu, L. Tao, Y. Zhu, Intrusion detection techniques for mobile cloud computing in heterogeneous 5G. Secur. Commun Netw. 9(16), 3049–3058 (2016)CrossRefGoogle Scholar
  125. 125.
    R. Atat, L. Liu, H. Chen, J. Wu, H. Li, Y. Yi, Enabling cyber-physical communication in 5g cellular networks: challenges, spatial spectrum sensing, and cyber-security. IET Cyber-Phys. Syst. Theor. Appl. 2(1), 49–54 (2017)CrossRefGoogle Scholar
  126. 126.
    O. Mämmelä, J. Hiltunen, J. Suomalainen, K. Ahola, P. Mannersalo, J. Vehkaperä, Towards micro-segmentation in 5G network security. In European Conference on Networks and Communications (EuCNC 2016) Workshop on Network Management, Quality of Service and Security for 5G Networks 2016 JunGoogle Scholar
  127. 127.
    P. Gandotra, R.K. Jha, A survey on green communication and security challenges in 5G wireless communication networks. J. Netw. Comput. Appl. 96, 39–61 (2017)CrossRefGoogle Scholar
  128. 128.
    A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, Blockchain for IoT security and privacy: the case study of a smart home. In Pervasive Computing and Communications Workshops (PerCom Workshops), 2017 IEEE International Conference on 2017 Mar 13 (pp. 618–623). IEEEGoogle Scholar
  129. 129.
    T. Gupta, G. Choudhary, V. Sharma, A survey on the security of Pervasive Online Social Networks (POSNs). arXiv preprint arXiv:1806.07526 (2018)Google Scholar
  130. 130.
    J.A. Oravec, Emerging “cyber hygiene” practices for the Internet of Things (IoT): professional issues in consulting clients and educating users on IoT privacy and security. In Professional Communication Conference (ProComm), 2017 IEEE International 2017 Jul 23 (pp. 1–5). IEEEGoogle Scholar
  131. 131.
    A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, LSB: a lightweight scalable BlockChain for IoT security and privacy. arXiv preprint arXiv:1712.02969 (2017)Google Scholar
  132. 132.
    V. Sharma, R. Kumar, W.H. Cheng, M. Atiquzzaman, K. Srinivasan, A. Zomaya, NHAD: Neuro-fuzzy based Horizontal Anomaly Detection in online social networks. IEEE Trans. Knowl. Data Eng. 30, 2171–2184 (2018)Google Scholar
  133. 133.
    V. Sharma, J. Kum, S. Kwon, I. You, F.-Y. Leu, An overview of 802.21a-2012 and its incorporation into IoT-Fog networks using osmotic framework. In IoTaaS 2017 – 3rd EAI International Conference on IoT as a Service, vol. 3, pp. 1–6. EAI, Sept. 2017Google Scholar
  134. 134.
    I. You, S. Kwon, G. Choudhary, V. Sharma, J.T. Seo, An enhanced LoRaWAN security protocol for privacy preservation in IoT with a case study on a smart factory-enabled parking system. Sensors (Basel, Switzerland) 18(6), 1888 (2018)CrossRefGoogle Scholar
  135. 135.
    M.A. Khan, K. Salah, IoT security: review, blockchain solutions, and open challenges. Futur. Gener. Comput. Syst. 82, 395–411 (2018)CrossRefGoogle Scholar
  136. 136.
    B. Baranidharan, Internet of Things (IoT) technologies, architecture, protocols, security, and applications: a survey, in In Handbook of Research on Cloud and Fog Computing Infrastructures for Data Science, (IGI Global, 2018), pp. 149–174Google Scholar
  137. 137.
    V. Sharma, J. Kim, S. Kwon, I. You, K. Lee, K. Yim, A framework for mitigating zero-day attacks in IoT. arXiv preprint arXiv:1804.05549 (2018) In: Conference on Information Security and Cryptography (CISC-S’17) (South Korea, 2017), pp. 1–6Google Scholar
  138. 138.
    V. Sharma, J. Kum, S. Kwon, I. You, F.-Y. Leu, Fuzzy-based protocol for secure remote diagnosis of IoT devices in 5g networks. In IoTaaS 2017 – 3rd EAI International Conference on IoT as a Service, vol. 3, pp. 1–6. EAI, Taiwan, Sept. 2017Google Scholar
  139. 139.
    J. Ni, X. Lin, X.S. Shen, Efficient and secure service-oriented authentication supporting network slicing for 5G-enabled IoT. IEEE J. Sel. Areas Commun. 36(3), 644–657 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gaurav Choudhary
    • 1
  • Vishal Sharma
    • 1
  1. 1.Department of Information Security EngineeringSoonchunhyang UniversityAsan-siSouth Korea

Personalised recommendations