Advertisement

5G Applications and Architectures

  • Dinesh Kumar Sah
  • D. Praveen Kumar
  • Chaya Shivalingagowda
  • P. V. Y. Jayasree
Chapter

Abstract

In the next decade, mobile traffic will supposedly increase a thousand-fold compared with what we are currently using owing to the addition of IoT devices, immense multimedia data circulation, and automated devices such as driverless cars. To fulfill the ongoing growth, the next-generation cellular network should able to accommodate this size in its service span. At the same time, the low-latency, high-span service is becoming a necessity of today’s devices. To accomplish the future demand, large-scale network adaptation requires next-generation cellular infrastructure, known as fifth generation (5G). In this chapter, we discuss how these requirements can be achieved over the next 10 years. We have covered the techniques that we presume to have a good possibility of being adopted in next-generation 5G networks. The proposed technology has been described in several texts and accepted in many technical recommendation reports. It is observed that large-capacity growth can only be possible with major architectural adoption in cellular and wireless network technology. This chapter provides insights into the evolution of cellular technology and can be used as a guideline for technology development toward 5G.

Keywords

Internet of things Fifth generation Cross layer design Software define network Network function virtualization 

References

  1. 1.
    J.C. Lin, Synchronization requirements for 5G: an overview of standards or specifications for cellular networks. IEEE Veh. Technol. Mag. 13, 1–1 (2018)CrossRefGoogle Scholar
  2. 2.
    S.K. Biswash, D.N.K. Jayakody, Performance based user-centric dynamic mode switching and mobility management scheme for 5G networks. J. Netw. Comput. Appl. 116, 24–34 (2018)CrossRefGoogle Scholar
  3. 3.
    S.A. Hassan, M.S. Omar, M.A. Imran, J. Qadir, D.N.K. Jayako, Universal access in 5G networks, potential challenges and opportunities for urban and rural environments, in 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management, ed. by A. Al-Dulaimi, X. Wang, I. Chih-Lin (Wiley, Hoboken, 2018)Google Scholar
  4. 4.
    M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18(3), 1617–1655 thirdquarter (2016)CrossRefGoogle Scholar
  5. 5.
    Huawei, 5G network architecture – a high-level perspective. (2016) http://www.huawei.com/en/industry-insights/mbb-2020/trends-insights/5g-network-architecture
  6. 6.
    P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S.A. Ashraf, B. Almeroth, J. Voigt, I. Riedel et al., Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun. Mag. 55(2), 70–78 (2017)CrossRefGoogle Scholar
  7. 7.
    P.K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)CrossRefGoogle Scholar
  8. 8.
    S.B.H. Said, M.R. Sama, K. Guillouard, L. Suciu, G. Simon, X. Lagrange, J.-M. Bonnin, New control plane in 3GPP LTE/EPC architecture for on-demand connectivity service, in 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet) (IEEE, 2013), pp. 205–209Google Scholar
  9. 9.
    Z. Wang, W. Zhang, A separation architecture for achieving energy-efficient cellular networking. IEEE Trans. Wirel. Commun. 13(6), 3113–3123 (2014)CrossRefGoogle Scholar
  10. 10.
    C.J. Bernardos, A.D.L. Oliva, P. Serrano, A. Banchs, L.M. Contreras, H. Jin, J.C. Zúñiga, An architecture for software defined wireless networking. IEEE Wirel. Commun. 21(3), 52–61 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Costa-Requena, SDN integration in LTE mobile backhaul networks, in 2014 International Conference on Information Networking (ICOIN) (IEEE, 2014), pp. 264–269Google Scholar
  12. 12.
    Z. Ma, Z. Zhang, Z. Ding, P. Fan, H. Li, Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci. China Inf. Sci. 58(4), 1–20 (2015)CrossRefGoogle Scholar
  13. 13.
    S.M.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutorials 19(2), 721–742 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Qureshi, S.A. Hassan, D.N.K. Jayakody, Divide-and-allocate: an uplink successive bandwidth division NOMA system. Trans. Emerg. Telecommun. Technol. 29(1), e3216 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Yi, X. Wang, K. Li, M. Huang et al., A comprehensive survey of network function virtualization. Comput. Netw. 133, 212–262 2018CrossRefGoogle Scholar
  16. 16.
    S.M. Islam, M. Zeng, O.A. Dobre, NOMA in 5G systems: exciting possibilities for enhancing spectral efficiency (2017). arXiv preprint:1706.08215Google Scholar
  17. 17.
    T.L. Marzetta, Massive MIMO: an introduction. Bell Labs Tech. J. 20, 11–22 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Niu, Y. Li, D. Jin, L. Su, A.V. Vasilakos, A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges. Wirel. Netw. 21(8), 2657–2676 (2015)CrossRefGoogle Scholar
  19. 19.
    T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez Jr., Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1(1), 335–349 (2013)CrossRefGoogle Scholar
  20. 20.
    W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)CrossRefGoogle Scholar
  21. 21.
    L.F.M. Vieira, M.A.M. Vieira, Network coding for 5G network and D2D communication, in Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks (ACM, 2017), pp. 113–120Google Scholar
  22. 22.
    I. Al Shiab, Cross-layer software defined networks: a survey.Google Scholar
  23. 23.
    Y. Niu, Y. Li, M. Chen, D. Jin, S. Chen, A cross-layer design for a software-defined millimeter-wave mobile broadband system. IEEE Commun. Mag. 54(2), 124–130 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Baligh, M. Hong, W.-C. Liao, Z.-Q. Luo, M. Razaviyayn, M. Sanjabi, R. Sun, Cross layer provision of future cellular networks (2014). arXiv preprint: 1407.1424Google Scholar
  25. 25.
    J. Tang, W.P. Tay, T.Q.S. Quek, Cross-layer resource allocation with elastic service scaling in cloud radio access network. IEEE Trans. Wirel. Commun. 14(9):5068–5081 (2015)CrossRefGoogle Scholar
  26. 26.
    B. Fu, Y. Xiao, H. Deng, H. Zeng, A survey of cross-layer designs in wireless networks. IEEE Commun. Surv. Tutorials 16(1), 110–126 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Lin, N.B. Shroff, R. Srikant, A tutorial on cross-layer optimization in wireless networks. IEEE J. Sel. Areas Commun. 24(8), 1452–1463 (2006)CrossRefGoogle Scholar
  28. 28.
    L.D.P. Mendes, J.J.P.C. Rodrigues, A survey on cross-layer solutions for wireless sensor networks. J. Netw. Comput. Appl. 34(2), 523–534 (2011)CrossRefGoogle Scholar
  29. 29.
    R. Ranjan, S. Varma, Challenges and implementation on cross layer design for wireless sensor networks. Wirel. Pers. Commun. 86(2), 1037–1060 (2016)CrossRefGoogle Scholar
  30. 30.
    I. Al-Anbagi, M. Erol-Kantarci, H.T. Mouftah, A survey on cross-layer quality-of-service approaches in WSNS for delay and reliability-aware applications. IEEE Commun. Surv. Tutorials 18(1), 525–552 (2016)CrossRefGoogle Scholar
  31. 31.
    R. Muraleedharan, L.A. Osadciw, Security: cross layer protocol in wireless sensor network, in INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings (IEEE, 2006), pp. 1–2Google Scholar
  32. 32.
    D.K. Sah, T. Amgoth, Parametric survey on cross-layer designs for wireless sensor networks. Comput. Sci. Rev. 27, 112–134 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    M.C. Vuran, I.F. Akyildiz, XLP: a cross-layer protocol for efficient communication in wireless sensor networks. IEEE Trans. Mob. Comput. 9(11), 1578–1591 (2010)CrossRefGoogle Scholar
  34. 34.
    R, Trivisonno, R, Guerzoni, I, Vaishnavi, D. Soldani, SDN-based 5G mobile networks: architecture, functions, procedures and backward compatibility. Trans. Emerg. Telecommun. Technol. 26(1), 82–92 (2015)CrossRefGoogle Scholar
  35. 35.
    Network Functions Virtualisation, SDN and openflow world congress (2012)Google Scholar
  36. 36.
    ETSI, Network function virtualisation-white paper2 (2013). http://portal.etsi.org/NFV/NFV_White_Paper2.pdf Google Scholar
  37. 37.
    NFVISG ETSI, Network functions virtualization, white paper (2014). http://www.esti.org/technologiescluster/technologies/nfv
  38. 38.
    P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, J. Yao, 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Blanco, J.O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng, J. Pérez-Romero, I. Trajkovska, P.S. Khodashenas, L. Goratti, M. Paolino et al., Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput. Stand. Interfaces 54, 216–228 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Greene, TR10: software-defined networking. Technology Review (MIT) (2009)Google Scholar
  41. 41.
    P. Newman, G. Minshall, T.L. Lyon, IP switching-ATM under IP. IEEE/ACM Trans. Networking (TON) 6(2), 117–129 (1998)CrossRefGoogle Scholar
  42. 42.
    N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S. Shenker, NOX: towards an operating system for networks. ACM SIGCOMM Comput. Commun. Rev. 38(3), 105–110 (2008)CrossRefGoogle Scholar
  43. 43.
    N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  44. 44.
    C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas, M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe et al., Network service orchestration standardization: a technology survey. Comput. Stand. Interfaces 54, 203–215 (2017)CrossRefGoogle Scholar
  45. 45.
    Open Networking Foundation, Software-defined networking: the new norm for networks. ONF White Pap. 2, 2–6 (2012)Google Scholar
  46. 46.
    D. Kreutz, F.M.V. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Procee. IEEE 103(1), 14–76 (2015)CrossRefGoogle Scholar
  47. 47.
    H. Jamjoom, D. Williams, U. Sharma, Don’t call them middleboxes, call them middlepipes, in Proceedings of the third workshop on Hot topics in software defined networking (ACM, 2014), pp. 19–24Google Scholar
  48. 48.
    M. Series, IMT vision–framework and overall objectives of the future development of IMT for 2020 and beyond (2015)Google Scholar
  49. 49.
  50. 50.
    J.P. Vasseur, J.L. Le Roux, Path computation element (PCE) communication protocol (PCEP). Technical report (2009)Google Scholar
  51. 51.
    R. Enns, M. Bjorklund, J. Schoenwaelder, Network configuration protocol (NETCONF). Network (2011). http://www.rfc-editor.org/info/rfc6241
  52. 52.
    Open Network Foundation, Of-config 1.2: openflow management and configuration protocol (2014). https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
  53. 53.
    ITU, ITU-T recommendation M.3100: generic network information model. ITU 1, 1–6 (2005)Google Scholar
  54. 54.
    ITU, M.3102: unified generic management information model for connection-oriented and connectionless networks. ITU-T 1, 1–6 (2011)Google Scholar
  55. 55.
    DMTF Common Information Model, DMTF 1, 1–6. http://www.dmtf.org/standards/cim
  56. 56.
  57. 57.
    P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., Onos: towards an open, distributed SDN OS, in Proceedings of the third workshop on Hot topics in software defined networking (ACM, 2014), pp. 1–6Google Scholar
  58. 58.
    J. Medved, R. Varga, A. Tkacik, K. Gray, OpenDaylight: towards a model-driven SDN controller architecture, in 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (IEEE, 2014), pp. 1–6Google Scholar
  59. 59.
    D. Katz, K. Kompella, D. Yeung, Traffic engineering (TE) extensions to OSPF version 2. Technical report (2003)Google Scholar
  60. 60.
    D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-TE: extensions to RSVP for LSP tunnels. Technical report (2001)Google Scholar
  61. 61.
    D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The locator/ID separation protocol (LISP). Technical report (2013)Google Scholar
  62. 62.
    OTF, Project ASPEN: real time media interface specification.Google Scholar
  63. 63.
    E. Crabbe, R. Varga, J. Medved, I. Minei, PCEP extensions for stateful PCE, internet-draft draft-ietf-pce-stateful-pce-14. Internet Eng. Task Force 1, 1–6 (2017)Google Scholar
  64. 64.
    Q. Wu, D. Dhody, D. Lopez, O.G. de Dios, Secure transport for PCEP, internet-draft draft-ietf-pce-pceps-10. Internet Eng. Task Force 1, 1–6 (2018)Google Scholar
  65. 65.
    S. Hares, Intent-based nemo overview. Internet Draft RFC 1, 1–6 (2015)Google Scholar
  66. 66.
    E.W. Burger, J. Seedorf, Application-layer traffic optimization (ALTO) problem statement (2009)Google Scholar
  67. 67.
    NEC NEC, Programmableflow: redefining cloud network virtualization with openflow. https://www.necam.com/whitepapers/Docs/?S=Pflow
  68. 68.
    E.T. Docket, Technical report, Technical Report (2017). https://www.opnfv.org/
  69. 69.
    Specifications Technical Report Docket, ET., Technical report (2017). https://portal.3gpp.org/desktopmodules/specifications/specificationdetails.aspx?specificationid=3144
  70. 70.
    P. Neves, R. Calé, M. Costa, G. Gaspar, J. Alcaraz-Calero, Q. Wang, J. Nightingale, G. Bernini, G. Carrozzo, Á. Valdivieso et al., Future mode of operations for 5G–the SELFNET approach enabled by SDN/NFV. Comput. Stand. Interfaces 54, 229–246 (2017)CrossRefGoogle Scholar
  71. 71.
    C. Price, S. Rivera et al., OPNFV: an open platform to accelerate NFV. White Paper. A Linux Foundation Collaborative Project (2012)Google Scholar
  72. 72.
    OTF, Project boulder: intent northbound interface (NBI). Open Netw Found. 1, 1–6 (2015)Google Scholar
  73. 73.
    P. Borril, M. Burgess, T. Craw, M. Dvorkin, A promise theory perspective on data networks. arXiv preprint: 1405.2627 (2014)Google Scholar
  74. 74.
    OTF, Neutron developer documentation. http://docs.openstack.org/developer/neutron/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dinesh Kumar Sah
    • 1
  • D. Praveen Kumar
    • 1
  • Chaya Shivalingagowda
    • 2
  • P. V. Y. Jayasree
    • 3
  1. 1.Indian Institute of Technology (ISM)DhanbadIndia
  2. 2.Kalsekar Engineering CollegeNew Panvel Mumbai and GITAM UniversityVizagIndia
  3. 3.GITAM UniversityVizagIndia

Personalised recommendations