Advertisement

Other Existing Carbon Forms

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova
Chapter

Abstract

In this section, we show several other carbon allotropes, from those rare as, for example, lonsdaleite to common glassy carbon and “carbon black,” xerogels, or hydrogels. In case of carbide- and MOF-derived carbons (relatively new research areas, especially the last one), the production methods vary and structures of formed carbons can be distinct (carbon nanotubes, fullerene- or onion-like nanostructures, nanocrystalline graphitic carbon, amorphous carbon, nanodiamonds, etc.); this is not a special structural type of carbon.

Keywords

Glassy carbon Carbide-derived carbon MOF-derived carbon Chaoite Graphane Graphone M-carbon Q-carbon T-carbon 

References

  1. 1.
    M.P. Manoharan, H. Lee, R. Rajagopalan, H.C. Foley, M.A. Haque, Elastic properties of 4–6 nm-thick glassy carbon thin films. Nanoscale Res. Lett. 5, 14 (2009)CrossRefGoogle Scholar
  2. 2.
    K. Jurkiewicz, S. Duber, H.E. Fischerd, A. Burian, Modelling of glass-like carbon structure and its experimental verification by neutron and X-ray diffraction. J. Appl. Crystallogr. 50, 36–48 (2017)CrossRefGoogle Scholar
  3. 3.
    O.J.A. Schueller, S.T. Brittain, G.M. Whitesides, Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9(6), 477–480 (1997)CrossRefGoogle Scholar
  4. 4.
    J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016)CrossRefGoogle Scholar
  5. 5.
    C.M. Lentz, B.A. Samuel, H.C. Foley, M.A. Haque, Synthesis and characterization of glassy carbon nanowires. J. Nanomater 2011, (2011). Article ID 129298, 8 ppGoogle Scholar
  6. 6.
    A.F. Goncharov, Graphite at high pressures: Pseudomelting at 44 GPa. Sov. Phys. JETP 71(5), 1025–1027 (1990)Google Scholar
  7. 7.
    M. Yao, X. Fan, W. Zhang, et al., Uniaxial-stress-driven transformation in cold compressed glassy carbon. Appl. Phys. Lett. 111, 101901 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Hu, J. He, Z. Zhao, et al., Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 3, e1603213 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Csontos, Z. Toth, Z. Pápa, et al., Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses. Appl. Phys. A Mater. Sci. Process. 122, 593 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Collaud Coen, Functionalization of graphite, glassy carbon, and polymer surfaces with highly oxidized sulfur species by plasma treatments. J. Appl. Phys. 92, 5077–5083 (2002)CrossRefGoogle Scholar
  11. 11.
    I. Emahi, M.P. Mitchell, D.A. Baum, Electrochemistry of pyrroloquinoline quinone (PQQ) on multi-walled carbon nanotube-modified glassy carbon electrodes in biological buffers. J. Electrochem. Soc. 164(3), H3097–H3102 (2017)CrossRefGoogle Scholar
  12. 12.
    F. Campanhã Vicentini, B.C. Janegitz, C.M.A. Brett, O. Fatibello-Filho, Tyrosinase biosensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sens. Actuators B Chem. 188, 1101–1108 (2013)CrossRefGoogle Scholar
  13. 13.
    F. Chekin, S. Bagheri, S. Bee Abd Hamid, Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Bull. Mater. Sci. 38(7), 1711–1716 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Robin Nxele, P. Mashazi, T. Nyokong, Surface functionalization of glassy carbon electrodes via adsorption, electrografting and click chemistry using quantum dots and alkynyl substituted phthalocyanines: a brief review. Fourth Conference on Sensors, MEMS, and Electro-Optic Systems, 2017, Proceedings Volume 10036, 100360DGoogle Scholar
  15. 15.
    M.L. Valenzuela, R. Cisternas, P. Jara-Ulloa, L. Rodriguez, Electroanalytical analysis of glassy carbon electrode modified with COOH- and NO2- functionalized polyspyrophosphazenes. J. Chil. Chem. Soc. 62(2), 3515–3518 (2017)CrossRefGoogle Scholar
  16. 16.
    I. Kocak, Characterization of the reduction of oxygen at anthraquinone-modified glassy carbon and highly oriented pyrolytic graphite electrodes. Anal. Lett. 50(9), 1448–1462 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Lv, Y. Tang, L. Teng, D. Tang, J. Zhang, Aminobenzene sulfonic acid-functionalized carbon nanotubes on glassy carbon electrodes for probing traces of mercury(II). J. Serb. Chem. Soc. 82(1), 73–82 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Actis, G. Caulliez, G. Shul, et al., Functionalization of glassy carbon with diazonium salts in ionic liquids. Langmuir 24(12), 6327–6333 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Liu, S. Dong, Grafting of diaminoalkane on glassy carbon surface and its functionalization. Electrochem. Commun. 2(10), 707–712 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Balooei, J. Bakhsh Raoof, F. Chekin, R. Ojani, Novel sensor based on 3-mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of Cefixime. Anal. Bioanal. Electrochem. 9(3), 266–276 (2017)Google Scholar
  21. 21.
    R. Sakthivel, S. Dhanalakshmi, S.-M. Chen, et al., A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 12, 9288–9300 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Marwan, T. Addou, D. Bélanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17(9), 2395–2403 (2005)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)Google Scholar
  25. 25.
    J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceramics 10(2), 87–95 (2016)CrossRefGoogle Scholar
  26. 26.
    Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)CrossRefGoogle Scholar
  28. 28.
    S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem 18(22), 3219–3229 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: Study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)CrossRefGoogle Scholar
  31. 31.
    V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)CrossRefGoogle Scholar
  32. 32.
    C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)CrossRefGoogle Scholar
  33. 33.
    N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Myalski, B. Hekner, A. Posmyk, The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, (2015) pp. 000121–000124CrossRefGoogle Scholar
  35. 35.
    Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32, 042001 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    S. Dadkhah, E. Ziaei, A. Mehdinia, T. Baradaran Kayyal, A. Jabbari, A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol a. Microchim. Acta 183(6), 1933–1941 (2016)CrossRefGoogle Scholar
  39. 39.
    J. Bakhsh Raoof, R. Ojani, M. Baghayeri, M. Amiri-Aref, Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes as a sensor device for simultaneous determination of acetaminophen and tyramine. Anal. Methods 4, 1579–1587 (2012)CrossRefGoogle Scholar
  40. 40.
    www.orioncarbons.com. Accessed on 31 Oct 2017
  41. 41.
    C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)CrossRefGoogle Scholar
  42. 42.
  43. 43.
  44. 44.
  45. 45.
    N. Probst, E. Grivei, Structure and electrical properties of carbon black. Carbon 40, 201–205 (2002)CrossRefGoogle Scholar
  46. 46.
    M. Ozawa, E. Ōsawa, Carbon blacks as the source materials for carbon nanotechnology. In: “Carbon Nanotechnology”, 2006, L. Dai. (Ed.), Chapt. 6, p. 127-151. Elsevier: DordrechtCrossRefGoogle Scholar
  47. 47.
  48. 48.
    S. Lim, X. Faïn, P. Gino, et al., Black carbon variability since preindustrial times in the Eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, icecores. Atmos. Chem. Phys. 17, 3489–3505 (2017)CrossRefGoogle Scholar
  49. 49.
    C. Garland, S. Delapena, R. Prasad, C. L’Orange, D. Alexander, M. Johnson, Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations. Atmos. Environ. 169, 140–149 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Guha, B. De Kumar, P. Dha, et al., Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India. Aerosol Air Qual. Res. 15, 786–798 (2015)CrossRefGoogle Scholar
  51. 51.
    W. Min Hao, A. Petkov, B.L. Nordgre, et al., Daily black carbón emissions from fires in northern Eurasia for 2002–2015. Geosci. Model Dev. 9, 4461–4474 (2016)CrossRefGoogle Scholar
  52. 52.
    Ö. Gustafssona, V. Ramanathan, Convergence on climate warming by black carbon aerosols. PNAS 113(16), 4243–4245 (2016)CrossRefGoogle Scholar
  53. 53.
    V. Ramanathan, G. Carmichael, Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)CrossRefGoogle Scholar
  54. 54.
    O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Volume 2011. Article ID 521985, 8 pp (2011)Google Scholar
  55. 55.
  56. 56.
    G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)CrossRefGoogle Scholar
  57. 57.
    Q. Zhang, B.-Y. Zhang, Z.-X. Guo, J. Yu, Tunable electrical conductivity of carbon-black-filled ternary polymer blends by constructing a hierarchical structure. Polymers 9, 404, 11 pp (2017)CrossRefGoogle Scholar
  58. 58.
    S.K.H. Gulrez, S. Al-Assaf, G.O. Phillips. Hydrogels: methods of preparation, characterisation and applications. in Progress in Molecular and Environmental Bioengineering. From Analysis and Modeling to Technology Applications. ed. by A. Carpi, ISBN: 978-953-307-268-5 (InTech, London, UK, 2011)Google Scholar
  59. 59.
    L. Zuo, Y. Zhang, L. Zhang, Y.-E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: Preparation, properties and applications. Materials 8, 6806–6848 (2015)CrossRefGoogle Scholar
  60. 60.
    J. Shen, D.Y. Guan, Preparation and application of carbon aerogels, in Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies, ed. by M. Aegerter, N. Leventis, M. Koebel, (Springer, New York, 2011)Google Scholar
  61. 61.
    X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for Lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017)CrossRefGoogle Scholar
  62. 62.
    K.-S. Lin, Y.-J. Mai, S.-W. Chiu, J.-H. Yang, S.L I. Chan. Synthesis and rage. J. Nanomater. 2012, Article ID 201584, 9 pp (2012)Google Scholar
  63. 63.
    K. Kreek, K. Kriis, B. Maaten, et al., Organic and carbon aerogels containing rare-earth metals: Their properties and application as catalysts. J. Non-Cryst. Solids 404, 43–48 (2014)CrossRefGoogle Scholar
  64. 64.
    C. Macias, G. Rasines, T.E. García, et al., Synthesis of porous and mechanically compliant carbon aerogels using conductive and structural additives. Gels 2, 4 (2016)CrossRefGoogle Scholar
  65. 65.
    B. Xue, M. Qin, J. Wu, et al., Electroresponsive supramolecular graphene oxide hydrogels for active Bacteria adsorption and removal. ACS Appl. Mater. Interfaces 8(24), 15120–15127 (2016)CrossRefGoogle Scholar
  66. 66.
    C. Shen, E. Barrios, M. McInnis, J. Zuyus, L. Zhai, Fabrication of graphene aerogels with heavily loaded metallic nanoparticles. Micromachines 8, 47 (2017)CrossRefGoogle Scholar
  67. 67.
    Y. Liu, H. Wang, D. Lin, J. Zhao, C. Liu, J. Xie, Y. Cui, A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res. 10(4), 1213–1222 (2017)CrossRefGoogle Scholar
  68. 68.
    H. Guo, T. Jiao, Q. Zhang, W. Guo, Q. Peng, X. Ya, Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res. Lett. 10, 272 (2015)CrossRefGoogle Scholar
  69. 69.
    Y. Hu, X. Tong, H. Zhuo, et al., 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6, 15788–15795 (2016)CrossRefGoogle Scholar
  70. 70.
    M. Yu, Y. Han, J. Li, L. Wang, One-step synthesis of sodium carboxymethyl cellulose-derived carbon aerogel/nickel oxide composites for energy storage. Chem. Eng. J. 324, 287–295 (2017)CrossRefGoogle Scholar
  71. 71.
    J. Štefelová, M. Mucha, T. Zelenka, Cellulose acetate-based carbon xerogels and cryogels. WIT Transactions on Engineering Sciences 77., WIT Press, 65–75 (2013)CrossRefGoogle Scholar
  72. 72.
    P. Hao, Z. Zhao, J. Tian, et al., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120–12129 (2014)CrossRefGoogle Scholar
  73. 73.
    A. Feaver, S. Sepehri, P. Shamberger, A. Stowe, T. Autrey, G. Cao, Coherent carbon Cryogel-ammonia borane nanocomposites for H2 storage. J. Phys. Chem. B 111, 7469–7472 (2007)CrossRefGoogle Scholar
  74. 74.
    C. Alegre, D. Sebastián, E. Baquedano, et al., Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR). Catalysts 2, 466–489 (2012)CrossRefGoogle Scholar
  75. 75.
    N. Mahata, A.R. Silva, M.F.R. Pereira, C. Freire, B. de Castro, J.L. Figueiredo, Anchoring of a [Mn(salen)Cl] complex onto mesoporous carbon xerogels. J. Colloid Interface Sci. 311, 152–158 (2007)CrossRefGoogle Scholar
  76. 76.
    W. Kicinski, M. Szala, M. Nita, Structurally tailored carbon xerogels produced through a sol–gel process in a water–methanol–inorganic salt solution. J. Sol-Gel Sci. Technol. 58, 102–113 (2011)CrossRefGoogle Scholar
  77. 77.
    W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep. 3, 1935, 7 pp (2013)CrossRefGoogle Scholar
  78. 78.
    E. Kowsari, High-performance supercapacitors based on ionic liquids and a graphene nanostructure, in Ionic Liquids – Current State of the Art, (Intech, London, UK, 2015), pp. 505–542Google Scholar
  79. 79.
    G. Yushin, A. Nikitin, Y. Gogotsi, Carbide-derived carbon, in Nanomaterials Handbook, (Taylor & Francis Group, Boca Raton, 2006)Google Scholar
  80. 80.
    V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons – From porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011)CrossRefGoogle Scholar
  81. 81.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)CrossRefGoogle Scholar
  82. 82.
    V. Presser, L. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible Nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv. Energy Mater. 1(3), 423–430 (2011)CrossRefGoogle Scholar
  83. 83.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes of Less Than 1 Nanometer. Science 313(5794), 1760–1763 (2006)CrossRefGoogle Scholar
  84. 84.
    S.H. Yeon, P. Reddington, Y. Gogotsi, J.E. Fischer, C. Vakifahmetoglu, P. Colombo, Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon 48, 201–210 (2010)CrossRefGoogle Scholar
  85. 85.
    Y. Gogotsi, Not just graphene – The wonderful world of carbon and related nanomaterials. MRS Bull. 40, 1110–1120 (2015)CrossRefGoogle Scholar
  86. 86.
    M. Rose, Y. Korenblit, E. Kockrick, L. Borchard, M. Oschatz, S. Kaskel, G. Yushin, Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7(8), 1108–1117 (2011)CrossRefGoogle Scholar
  87. 87.
    R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J.E. Fischer, S. Kucheyev, Titanium carbide derived Nanoporous carbon for energy-related applications. Carbon 44(12), 2489–2497 (2006)CrossRefGoogle Scholar
  88. 88.
    M. Sevilla, R. Mokaya, Activation of carbide derived carbons: A route to materials with enhanced gas and energy storage properties. J. Mater. Chem. 21, 4727–4732 (2011)CrossRefGoogle Scholar
  89. 89.
    E.N. Hoffman, G. Yushin, B.G. Wendler, M.W. Barsouma, Y. Gogotsi, Carbide-derived carbon membrane. Mater. Chem. Phys. 112(2), 587–591 (2008)CrossRefGoogle Scholar
  90. 90.
    C. Portet, D. Kazachkin, S. Osswald, Y. Gogotsi, E. Borguet, Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons. Thermochim. Acta 497, 137–142 (2010)CrossRefGoogle Scholar
  91. 91.
    B. Krüner, C. Odenwald, A. Tolosa, A. Schreiber, M. Aslan, G. Kickelbick, V. Presser, Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustainable Energy Fuels 1, 1588–1600 (2017)CrossRefGoogle Scholar
  92. 92.
    S. Ishikawa, T. Saito, K. Kuwahara, Carbon Materials with Nano-sized Pores Derived from Carbides. Sei Technical Review 82, 152–157 (2016)Google Scholar
  93. 93.
    M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova, M.W. Barsoum, Y. Gogotsi, Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. 126, 4977–4980 (2014)CrossRefGoogle Scholar
  94. 94.
    H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim. Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18–21, 2006, Zhuhai, China. pp.484–487 (2006)Google Scholar
  95. 95.
    A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)CrossRefGoogle Scholar
  96. 96.
    S.K. Mandal, S. Hussain, A.K. Pal, Growth mechanism of carbon nanotubes deposited by electrochemical technique. Ind. J. Pure Appl. Phys. 43, 765–771 (2005)Google Scholar
  97. 97.
    K. Yamagiwa, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes. Jap. J. Appl. Phys. 56, 06GE05 (2017)CrossRefGoogle Scholar
  98. 98.
    L. Zhang, X. Qina, G. Shaoa, Z. Ma, S. Liu, C. He, A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors. Mater. Lett. 122, 78–81 (2014)CrossRefGoogle Scholar
  99. 99.
    A.H. Farmahini, D.S. Sholl, S.K. Bhatia, Fluorinated carbide-derived carbon: More hydrophilic, yet apparently more hydrophobic. J. Am. Chem. Soc. 137(18), 5969–5979 (2015)CrossRefGoogle Scholar
  100. 100.
    B. Li, H.-M. Wen, W. Zhou, J.Q. Xu, B. Chen, Porous metal-organic frameworks: Promising materials for methane storage. Chem 1, 557–580 (2016)CrossRefGoogle Scholar
  101. 101.
    S.K. Bhatia, T.X. Nguyen, Potential of silicon carbide-derived carbon for carbon capture. Ind. Eng. Chem. Res. 50, 10380–10383 (2011)CrossRefGoogle Scholar
  102. 102.
    Z. Zondaka, R. Valner, A. Aabloo, T. Tamm, R. Kiefer, Embedded carbide-derived carbon particles in polypyrrole for linear actuator. Proc. SPIE 9798, 97981H-7 (2016)Google Scholar
  103. 103.
    W. Xing, C. Liu, Z. Zhou, J. Zhou, G. Wang, S. Zhuo, et al., Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res. Lett. 9, 189 (2014)CrossRefGoogle Scholar
  104. 104.
    L. Borchardt, F. Hasche, M.R. Lohe, et al., Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. Carbon 50, 1861–1870 (2012)CrossRefGoogle Scholar
  105. 105.
    J. Gläsel, J. Diao, Z. Feng, M. Hilgart, T. Wolker, D. Sheng Su, B.J.M. Etzold, Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction. Chem. Mater. 27, 5719–5725 (2015)CrossRefGoogle Scholar
  106. 106.
    J. Tae Lee, H. Kim, M. Oschatz, D.-C. Lee, F. Wu, H.-T. Lin, et al., Micro- and mesoporous carbide-derived carbon–selenium cathodes for high-performance lithium selenium batteries. Adv. Energy Mater. 5, 1400981 (2014)CrossRefGoogle Scholar
  107. 107.
    W. Nickel, M. Oschatz, M. von der Lehr, M. Leistner, et al., Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hardtemplating. J. Mater. Chem. A 2, 12703 (2014)CrossRefGoogle Scholar
  108. 108.
    P.-C. Gao, W.-Y. Tsai, B. Daffos, P.-L. Taberna, C.R. Pérez, Y. Gogotsi, P. Simon, F.G. Favier, Carbide derived carbon for high-power supercapacitors. Nano Energy 12, 197–206 (2015)CrossRefGoogle Scholar
  109. 109.
    H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017)CrossRefGoogle Scholar
  110. 110.
    K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 5887–5903 (2016)CrossRefGoogle Scholar
  111. 111.
    Q. Ren, H. Wang, X.-F. Lu, Y.-X. Tong, G.-R. Li, Recent Progress on MOF-derived heteroatom-doped carbon-based Electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018)CrossRefGoogle Scholar
  112. 112.
    L. Lux, K. Williams, S. Ma, Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm 17, 10–22 (2015)CrossRefGoogle Scholar
  113. 113.
    A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 41, 5262–5284 (2012)CrossRefGoogle Scholar
  114. 114.
    P. Silva, S.M.F. Vilela, J.P.C. Tome, F.A. Almeida Paz, Multifunctional metal–organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 44, 6774–6803 (2015)CrossRefGoogle Scholar
  115. 115.
    B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48, 456–463 (2010)CrossRefGoogle Scholar
  116. 116.
    M. Yang, X. Hu, Z. Fang, et al., Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn–air and li–S batteries: Highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 27(36), 1701971 (2017)CrossRefGoogle Scholar
  117. 117.
    X. Li, J. Zhang, Y. Han, M. Zhu, S. Shang, W. Li, MOF-derived various morphologies of N-doped carbon composites for acetylene hydrochlorination. J. Mater. Sci. 7 (2018). https://doi.org/10.1007/s10853-017-1951-3CrossRefGoogle Scholar
  118. 118.
    B. Chen, G. Ma, D. Kong, Y. Zhu, Y. Xia, Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon 95, 113–124 (2015)CrossRefGoogle Scholar
  119. 119.
    W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced Electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRefGoogle Scholar
  120. 120.
    H.-L. Jiang, B. Liu, Y.-Q. Lan, et al., From metal-organic framework to Nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133(31), 11854–11857 (2011)CrossRefGoogle Scholar
  121. 121.
    B. Ding, J. Wang, Z. Chang, G. Xu, et al., Self-sacrificial template-directed synthesis of metal–organic framework-derived porous carbon for energy-storage devices. Chem. Electro. Chem. 3(4), 668–674 (2016)Google Scholar
  122. 122.
    R. Chen, T. Zhao, T. Tian, et al., Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Materials 2, 124109 (2014)CrossRefGoogle Scholar
  123. 123.
    H. Bin Wu, S. Wei, L. Zhang et al. Embedding Sulfur in MOF-Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chemistry, a Eur. J., 2013, 9(33), 10804–10808CrossRefGoogle Scholar
  124. 124.
    A. Banerjee, K.K. Upadhyay, et al., MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density li-ion hybrid electrochemical capacitors (li-HECs). Nanoscale 6(8), 4387–4394 (2014)CrossRefGoogle Scholar
  125. 125.
    T. Segakwenga, N.M. Musyoka, J. Ren, et al., Comparison of MOF-5 and MIL-101 derived carbons for hydrogen storage application. Res. Chem. Intermed. 42, 4951 (2015). https://doi.org/10.1007/s11164-015-2338-1CrossRefGoogle Scholar
  126. 126.
    A. Li, Y. Tong, B. Cao, H. Song, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Rep. 7, Article number: 40574 (2017)Google Scholar
  127. 127.
    H. Li, L. Chi, C. Yang, L. Zhang, et al., MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31(19), 3069–3077 (2016)CrossRefGoogle Scholar
  128. 128.
    S. Hoon Ahn, A. Manthiram, Self-templated synthesis of co- and N-doped carbon microtubes composed of hollow Nanospheres and nanotubes for efficient oxygen reduction reaction. Small 13(11), 1603437 (2017)CrossRefGoogle Scholar
  129. 129.
    Y.-X. Zhou, Y.-Z. Chen, L. Cao, et al., Conversion of a metal–organic framework to N-doped porous carbon incorporating co and CoO nanoparticles: Direct oxidation of alcohols to esters. Chem. Commun. 51, 8292–8295 (2015)CrossRefGoogle Scholar
  130. 130.
    K.-Y.A. Lin, H.-A. Chang, B.-J. Chen, Multi-functional MOF-derived magnetic carbon sponge. J. Mater. Chem. A 4, 13611–13625 (2016)CrossRefGoogle Scholar
  131. 131.
    N.L. Torad, M. Hu, S. Ishihara, et al., Direct synthesis of MOF-derived nanoporous carbon with magnetic co nanoparticles toward efficient water treatment. Small 10(10), 2096–2107 (2014)CrossRefGoogle Scholar
  132. 132.
    X. Liu, X. Quan, Fe-MOF derived ferrous hierarchically porous carbon used as EF cathode for PFOA degradation. Journal of Geoscience and Environment Protection 5(6), 9–14 (2017)CrossRefGoogle Scholar
  133. 133.
    E.C. Walter, T. Beetz, M.Y. Sfeir, L.E. Brus, M.L. Steigerwald, Crystalline graphite from an organometallic solution-phase reaction. J. Am. Chem. Soc. 128(49), 15590–15591 (2006)CrossRefGoogle Scholar
  134. 134.
    W. Sisi, Z. Yinggang, H. Yifeng, et al., Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 60(7), 654–663 (2017)CrossRefGoogle Scholar
  135. 135.
    D.Z. Chen, C.Q. Chen, W.S. Shen, et al., MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 28(7), 1769–1779 (2017)CrossRefGoogle Scholar
  136. 136.
    S. Hoon Ahn, M.J. Klein, A. Manthiram, 1D co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 7(7), 1601979 (2017)CrossRefGoogle Scholar
  137. 137.
    Q. Gan, K. Zhao, S. Liu, Z. He, MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J. Mater. Sci. 52(13), 7768–7780 (2017)CrossRefGoogle Scholar
  138. 138.
    Z. Li, L. Yin, MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for li–se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7, 9597–9606 (2015)CrossRefGoogle Scholar
  139. 139.
    W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013)CrossRefGoogle Scholar
  140. 140.
    M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2(3), 218–245 (2017)CrossRefGoogle Scholar
  141. 141.
    S. Fardindoost, S. Hatamie, A. Iraji Zad, F. Razi Astaraei, Hydrogen sensing properties of nanocomposite graphene oxide/co-based metal organic frameworks (co-MOFs@GO). Nanotechnology 29, 015501 (2018). (7 pp)CrossRefGoogle Scholar
  142. 142.
    G. Cai, W. Zhang, L. Jiao, S.-H. Yu, H.-L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2(6), 791–802 (2017)CrossRefGoogle Scholar
  143. 143.
    T. Nagy, L. Yunq, I. Shinsuke, et al., MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem. Lett. 43(5), 717–719 (2014)CrossRefGoogle Scholar
  144. 144.
    L. Xiao, R. Xu, Q. Yuan, F. Wang, Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 167, 39–43 (2017)CrossRefGoogle Scholar
  145. 145.
    W. Li, S. Hu, X. Luo, et al., Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29(16), 1605820 (2017)CrossRefGoogle Scholar
  146. 146.
    S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50, 3363–3366 (2014)CrossRefGoogle Scholar
  147. 147.
    Shock compression research shows hexagonal diamond could serve as meteor impact marker. https://www.llnl.gov/news/shock-compression-research-shows-hexagonal-diamond-could-serve-meteor-impact-marker. Accessed on 2 Nov 2017
  148. 148.
    A.G. Kvashnin, P.B. Sorokin, Lonsdaleite films with nanometer thickness. J. Phys. Chem. Lett. 5, 541–548 (2014)CrossRefGoogle Scholar
  149. 149.
  150. 150.
    Structure of the Diamond-lonsdaleite System. http://www.imaging-git.com/science/electron-and-ion-microscopy/structure-diamond-lonsdaleite-system. Accessed on 2 Nov 2017
  151. 151.
    P. Nemeth, L.A.J. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, P.R. Buseck, Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 5, 5447, 5 pp (2014)CrossRefGoogle Scholar
  152. 152.
    L. Qingkun, S. Yi, L. Zhiyuan, Z. Yu, Lonsdaleite – A material stronger and stiffer than diamond. Scr. Mater. 65, 229–232 (2011)CrossRefGoogle Scholar
  153. 153.
    D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, et al., Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970, 6 pp (2016)CrossRefGoogle Scholar
  154. 154.
    B. Kulnitskiy, I. Perezhogin, G. Dubitskya, V. Blank, Polytypes and twins in the diamond–lonsdaleite system formed by high-pressure and high-temperature treatment of graphite. Acta Cryst B69, 474–479 (2013)Google Scholar
  155. 155.
    Y. Nakamuta, S. Toh, Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM. Am. Mineral. 98(4), 574–581 (2015)CrossRefGoogle Scholar
  156. 156.
    S.V. Goryainov, A.Y. Likhacheva, S.V. Rashchenko, A.S. Shubin, V.P. Afanas’eva, N.P. Pokhilenko, Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45, 305–313 (2014)CrossRefGoogle Scholar
  157. 157.
    B. Qu, B. Zhang, L. Wang, R. Zhou, X. Cheng Zeng, L. Li, Persistent luminescence hole-type materials by design: Transition-metal-doped carbon allotrope and carbides. ACS Appl. Mater. Interfaces 8(8), 5439–5444 (2016)CrossRefGoogle Scholar
  158. 158.
    A. Milani, M. Tommasini, V. Russo, et al., Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires. Beilstein J. Nanotechnol. 6, 480–491 (2015)CrossRefGoogle Scholar
  159. 159.
    V.V. Sobolev, V.Y. Slobodskoy, S.N. Selyukov, A.A. Udoyev, Some conversions of chaoite to other carbon phases. Int. Geol. Rev. 28(6), 680–683 (1986)CrossRefGoogle Scholar
  160. 160.
    J. Pola, A. Ouchi, S. Bakardjieva, et al., Laser photochemical etching of silica: Nanodomains of crystalline chaoite and silica in amorphous C/Si/O/N phase. J. Phys. Chem. C 112(34), 13281–13286 (2008)CrossRefGoogle Scholar
  161. 161.
    A. Tembre, J. Henocque, M. Clin. Infrared and Raman spectroscopic study of carbon-cobalt composites. Int. J. Spectrosc. 2011, Article ID 186471, 6 pp (2011)Google Scholar
  162. 162.
    S.K. Simakov, A.E. Kalmykov, L.M. Sorokin, et al., Chaoite formation from carbon-bearing fluid at low PT parameters. Dokl. Earth Sci. 399A(9), 1289–1290 (2004)Google Scholar
  163. 163.
    S. Li, Z. Huang, et al., Ferromagnetic chaoite macrotubes prepared at low temperature and pressure. Appl. Phys. Lett. 90, 232507 (2007)CrossRefGoogle Scholar
  164. 164.
    S. Li, G. Ji, Z. Huang, F. Zhang, Y. Du, Synthesis of chaoite-like macrotubes at low temperature and ambient pressure. Carbon 45, 2946–2950 (2007)CrossRefGoogle Scholar
  165. 165.
    Q. Peng, A.K. Dearden, J. Crean, et al., New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014)CrossRefGoogle Scholar
  166. 166.
    J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)CrossRefGoogle Scholar
  167. 167.
    D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of Graphene’s properties by reversible hydrogenation: Evidence for Graphane. Science 323(5914), 610–613 (2009)CrossRefGoogle Scholar
  168. 168.
    H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters. GraphAne: From synthesis to applications. arXiv:1502.05804 [cond-mat.mtrl-sci], (2015)Google Scholar
  169. 169.
    H. Zhang, Y. Miyamoto, A. Rubio. Laser-induced preferential dehydrogenation of graphane. Phys. Rev. B. 85, 201409(R) (2012)Google Scholar
  170. 170.
    C. Zhou, S. Chen, J. Lou, J. Wang, et al., Graphene’s cousin: The present and future of graphene. Nanoscale Res. Lett. 9, 26 (2014)CrossRefGoogle Scholar
  171. 171.
    H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters, Graphane. WIREs Comput. Mol. Sci. 5, 255–272 (2015)CrossRefGoogle Scholar
  172. 172.
    A. Bhattacharya, S. Bhattacharya, C. Majumder, G.P. Das. Third conformer of graphane: A first-principles density functional theory study. Phys. Rev. B. 83, Article ID 033404 (2011)Google Scholar
  173. 173.
    H. Einollahzadeh, S. Mahdi Fazeli, R. Sabet Dariani, Studying the electronic and phononic structure of penta-graphane. Sci. Technol. Adv. Mater. 17(1), 610–617 (2016)CrossRefGoogle Scholar
  174. 174.
    D. Haberer, C.E. Guusca, Y. Wang, et al., Evidence for a new two-dimensional C4H-type polymer based on hydrogenated graphene. Adv. Mater. 23, 4497–4503 (2011)CrossRefGoogle Scholar
  175. 175.
    V.E. Antonov, I.O. Bashkin, A.V. Bazhenov, et al., Multilayer graphane synthesized under high hydrogen pressure. Carbon 100, 465–473 (2016)CrossRefGoogle Scholar
  176. 176.
    H. Peelaers, A.D. Hernández-Nieves, O. Leenaerts, B. Partoens, F.M. Peeters, Vibrational properties of graphene fluoride and graphene. Appl. Phys. Lett. 98, 051914 (2011)CrossRefGoogle Scholar
  177. 177.
    M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: Graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)CrossRefGoogle Scholar
  178. 178.
    B.-R. Wu, C.-K. Yang, Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)CrossRefGoogle Scholar
  179. 179.
    M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, D.S. Galvao, Graphene to graphane: A theoretical study. Nanotechnology 20, 465704, 6 pp (2009)CrossRefGoogle Scholar
  180. 180.
    W. Liu, F.-H. Meng, J.-H. Zhao, X.-H. Jiang, A first-principles study on the electronic transport properties of zigzag graphane/graphene nanoribbons. J. Theor. Comput. Chem. 16(4), 1750032, 12 pp (2017)CrossRefGoogle Scholar
  181. 181.
    J.-H. Lee, J.C. Grossman, Magnetic properties in graphene-graphane superlattices. Appl. Phys. Lett. 97, 133102 (2010)CrossRefGoogle Scholar
  182. 182.
    A.S. Barnarda, I.K. Snook, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 20, 10459–10464 (2010)CrossRefGoogle Scholar
  183. 183.
    T. Hussain, P. Panigrahi, R. Ahuja, Sensing propensity of a defected graphane sheet towards CO, H2O and NO2. Nanotechnology 25(32), 325501 (2014)CrossRefGoogle Scholar
  184. 184.
    J. Xiao, S. Sitamraju, M.J. Janik, CO2 adsorption thermodynamics over N-substituted/grafted Graphanes: A DFT study. Langmuir 30(7), 1837–1844 (2014)CrossRefGoogle Scholar
  185. 185.
    T. Hussain, P. Panigrahi, R. Ahuja, Enriching physisorption of H2S and NH3 gases on a graphane sheet by doping with li adatoms. Phys. Chem. Chem. Phys. 16(17), 8100–8105 (2014)CrossRefGoogle Scholar
  186. 186.
    E. Ventura-Macias, J. Guerrero-Sánchez, N. Takeuchi, Formaldehyde adsorption on graphane. Computational and Theoretical Chemistry 1117, 119–123 (2017)CrossRefGoogle Scholar
  187. 187.
    T. Hussain, B. Pathak, M. Ramzan, T.A. Maark, R. Ahuja, Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 100, 183902 (2012)CrossRefGoogle Scholar
  188. 188.
    S.C. Ray, N. Soin, T. Makgato, et al., Graphene supported Graphone/Graphane bilayer nanostructure material for Spintronics. Sci. Reports 4, 3862 (2014)CrossRefGoogle Scholar
  189. 189.
    W. Zhao, J. Gebhardt, F. Spath, et al., Reversible hydrogenation of graphene on Ni(111)—Synthesis of “Graphone”. Chem. Eur. J. 21, 3347–3358 (2015)CrossRefGoogle Scholar
  190. 190.
    L. Feng, W.X. Zhang, The structure and magnetism of graphone. AIP Adv. 2, 042138 (2012)CrossRefGoogle Scholar
  191. 191.
    Q. Peng, A.K. Dearden, X.-J. Chen, et al., Peculiar pressure effect on Poisson ratio of graphone as a strain damper. Nanoscale 7, 9975–9979 (2015)CrossRefGoogle Scholar
  192. 192.
    M. Neek-Amal, J. Beheshtian, F. Shayeganfar, S.K. Singh, J.H. Los, F.M. Peeters, Spiral graphone and one-sided fluorographene nanoribbons. Phys. Rev. B 87, 075448 (2013)CrossRefGoogle Scholar
  193. 193.
    A.I. Podlivaev, L.A. Openov, On the thermal stability of Graphone. Semiconductors 45(7), 958–961 (2011)CrossRefGoogle Scholar
  194. 194.
    D.W. Boukhvalov, Stable antiferromagneticgraphone. Physica E43, 199–201 (2010)CrossRefGoogle Scholar
  195. 195.
    Q. Li, Y. Ma, A.R. Oganov, et al., Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009)CrossRefGoogle Scholar
  196. 196.
    M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, Monoclinic C2/m-20 carbon: a novel superhard sp3 carbon allotrope. RSC Adv. 6, 32740–32745 (2016)CrossRefGoogle Scholar
  197. 197.
    M. Amsler, J.A. Flores-Livas, M.A.L. Marques, S. Botti, S. Goedecker, Prediction of a novel monoclinic carbon allotrope. The European Physical Journal B 86, 383 (2013)CrossRefGoogle Scholar
  198. 198.
    J. Narayan, A. Bhaumik, Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015)CrossRefGoogle Scholar
  199. 199.
    J. Narayan, A. Bhaumik, Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett. 4(2), 118–126 (2016)CrossRefGoogle Scholar
  200. 200.
    J. Pandey, R. Khare, S. Khare, Q-carbon: A new, inexpensive and affordable diamond in Everyones hand. International Journal for Research in Applied Science & Engineering 5(V), 89–91 (2017)Google Scholar
  201. 201.
  202. 202.
    X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, G.S. T-Carbon, A novel carbon allotrope. Phys. Rev. Lett. 106, 155703 (2011)CrossRefGoogle Scholar
  203. 203.
    J. Zhang, R. Wang, X. Zhu, et al. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 8, Article number 683 (2017)Google Scholar
  204. 204.
    D. Li, F. Tian, D. Duan, Z. Zhao, et al., Modulated T carbon-like carbon allotropes: An ab initio study. RSC Adv. 4, 17364–17369 (2014)CrossRefGoogle Scholar
  205. 205.
    J.Q. Wang, C.X. Zhao, C.Y. Niu, Q. Sun, Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys. Condens. Matter 28(47), 475402 (2016)CrossRefGoogle Scholar
  206. 206.
    Aegerter, Michel A., Leventis, Nicholas, Koebel, Matthias M. (Eds.), Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. (Springer, New York, 2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations