Advertisement

Less-Common Carbon Nanostructures

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova
Chapter

Abstract

When the area of nanotechnology began to develop intensively as an independent field in the frontiers of physics, chemistry, materials chemistry and physics, medicine, biology, and other disciplines two decades ago, terms such as “nanoparticle,” “nanopowder,” “nanotube,” and “nanoplate,” and other terms related to shape rapidly became very common. At the same time, during the last years, efforts of researchers have led to reports of a large number of the nanostructure types mentioned earlier and the discovery of rarer species, such as “nanodumbbells,” “nanoflowers,” “nanorices,” “nanolines,” “nanotowers,” “nanoshuttles,” “nanobowlings,” “nanowheels,” “nanofans,” “nanopencils,” “nanotrees,” “nanoarrows,” “nanonails,” “nanobottles,” and “nanovolcanoes,” among many others.

Keywords

Rare nanocarbons Atomic carbon Elongated nanocarbons Nanocages Nanoflowers Nanosponges 

References

  1. 1.
    B.I. Kharisov, O.V. Kharissova, U. Ortiz Mendez, Handbook on Less-Common Nanostructures (CRC Press, Boca Raton, 2012)Google Scholar
  2. 2.
    G.G. Parigger, J.O. Hornkohl, A.M. Keszler, L. Nemes, Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite. Appl. Opt. 42(30), 6192–6198 (2003)CrossRefGoogle Scholar
  3. 3.
    C.G. Parigger, A.C. Woods, D.M. Surmick, et al., Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim. Acta B At. Spectrosc. 107, 132–138 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Hoffmann, Marginalia: C2 in all its guises. Am. Sci. 83(4), 309–311 (1995)Google Scholar
  5. 5.
    P.B. Shevlin, Formation of atomic carbon in the decomposition of 5-tetrazolyldiazonium chloride. J. Am. Chem. Soc. 94(4), 1379–1380 (2002)CrossRefGoogle Scholar
  6. 6.
    S.A. Krasnokutski, F.A. Huisken, A simple and clean source of low-energy atomic carbon. Appl. Phys. Lett. 105(11), 113506 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Shaik, D. Danovich, W. Wu, P. Su, H.S. Rzepa, P.C. Hiberty, Quadruple bonding in C2 and analogous eight-valence electron species. Nat. Chem. 4, 195–200 (2012)CrossRefGoogle Scholar
  8. 8.
    J.M. Matxain, F. Ruipérez, I. Infante, X. Lopez, J.M. Ugalde, G. Merino, M. Piris, Chemical bonding in carbon dimer isovalent series from the natural orbital functional theory perspective. J. Chem. Phys. 138, 151102 (2013)CrossRefGoogle Scholar
  9. 9.
    P.S. Skell, J.H. Plonka, Chemistry of the singlet and triplet C2 molecules. Mechanism of acetylene formation from reaction with acetone and acetaldehyde. J. Am. Chem. Soc. 92(19), 5620–5624 (1970)CrossRefGoogle Scholar
  10. 10.
    B. Garg, T. Bisht, Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 21, 1653, 16 pp (2016)CrossRefGoogle Scholar
  11. 11.
    J. Wang, H. Soo Choi, Y.-X.J. Wáng, Exponential growth of publications on carbon nanodots by Chinese authors. J. Thorac Dis. 7(7), E201–E205 (2015)Google Scholar
  12. 12.
    A.M. Ibarra-Ruiz, D.C. Rodríguez Burbano, J.A. Capobianco, Photoluminescent nanoplatforms in biomedical applications. Adv. Phys. 1(2), 194–225 (2016)Google Scholar
  13. 13.
    Q. Li, T.Y. Ohulchanskyy, R.L. Liu, K. Koynov, D.Q. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 114, 12062–12068 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Zuo, T. Jiang, X. Zhao, X. Xiong, S. Xiao, Z. Zhu, Preparation and application of fluorescent carbon dots. J. Nanomater. 2015, 787862, 13 pp (2015)CrossRefGoogle Scholar
  15. 15.
    P. Roy, P.-C. Chen, A.P. Periasamy, Y.-N. Chen, H.-T. Chang, Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater. Today 18(8), 447–458 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Song, S. Zhu, B. Yang, Bioimaging based on fluorescent carbon dots. RSC Adv. 4, 27184–27200 (2014)CrossRefGoogle Scholar
  17. 17.
    S.H. Song, M.-H. Jang, J. Chung, S.H. Jin, B.H. Kim, et al., Highly efficient light-emitting diode of graphene quantum dots fabricated from graphite intercalation compounds. Adv. Opt. Mater. 2(11), 1016–1023 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Han, S. Zhong, W. Pan, W. Shen, A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers. Nanotechnology 26, 065402, 11 pp (2015)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, F. Zhang, Y. Yang, et al., Composites of graphene quantum dots and reduced graphene oxide as catalysts for nitroarene reduction. ACS Omega 2, 7293–7298 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Cheng, B. Li, B. Li, B. Li, L. Wang, D. Wei, Y. Feng, D. Jia, Fluorescent zinc doped carbon nanodots derived from chitosan/metal ions complex for cell imaging. Nanomedicine 12(2), 506–507 (2016)CrossRefGoogle Scholar
  21. 21.
    W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. J. Nanopart. Res. 15, 1344 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Qin, W. Lu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sensors Actuators B 184, 156–162 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Loukanov, R. Sekiya, M. Yoshikawa, N. Kobayashi, Y. Moriyasu, S. Nakabayashi, Photosensitizer-conjugated ultrasmall carbon nanodots as multifunctional fluorescent probes for bioimaging. J. Phys. Chem. C 120(29), 15867–15874 (2016)CrossRefGoogle Scholar
  24. 24.
    V. Strauss, J.T. Margraf, C. Dolle, et al., Carbon nanodots: toward a comprehensive understanding of their photoluminescence. J. Am. Chem. Soc. 136(49), 17308–17316 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)CrossRefGoogle Scholar
  26. 26.
    B.-P. Qi, L. Bao, Z.-L. Zhang, D.-W. Pang, Electrochemical methods to study photoluminescent carbon nanodots: preparation, photoluminescence mechanism and sensing. ACS Appl. Mater. Interfaces 8(42), 28372–28382 (2016)CrossRefGoogle Scholar
  27. 27.
    D. Reyes, M. Camacho, M. Camacho, et al., Laser ablated carbon nanodots for light emission. Nanoscale Res. Lett. 11, 424, 11 pp (2016)CrossRefGoogle Scholar
  28. 28.
    A. Jose Amali, H. Hoshino, C. Wu, M. Ando, Q. Xu, From metal–organic framework to intrinsically fluorescent carbon nanodots. Chem. 20(27), 8279–8282 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Kim, J.K. Seo, J.H. Park, Y. Song, Y.S. Meng, M.J. Heller, White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon 124, 479–485 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Zhang, S.-H. Yu, Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Xu, T. Lai, Z. Feng, X. Weng, C. Huang, Formation of fluorescent carbon nanodots from kitchen wastes and their application for detection of Fe3+. Luminescence 30(4), 420–424 (2015)CrossRefGoogle Scholar
  32. 32.
    S.A. Chechetka, E. Miyako, Optical regulation of carbon nanodots by chemical functionalization. Chem. Lett. 45(8), 854–856 (2016)CrossRefGoogle Scholar
  33. 33.
    A.B. Bourlinos, A. Bakandritsos, A. Kouloumpis, D. Gournis, M. Krysmann, E.P. Giannelis, K. Polakova, K. Safarova, K. Hola, et al., Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22, 23327–23330 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Zhang, L. Tang, G. Hu, et al., Carbon nanodots-based nanocomposites with enhanced photocatalytic Performance and photothermal effects. Appl. Phys. Lett. 111, 013904 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Li Liu, B. Bin Chen, T. Yang, et al., One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods Appl. Fluoresc. 5(1), 015003 (2017)CrossRefGoogle Scholar
  36. 36.
    J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)CrossRefGoogle Scholar
  37. 37.
    C.-L. Shen, L.-X. Su, J.-H. Zang, et al., Carbon nanodots as dual-mode nanosensors for selective detection of hydrogen peroxide. Nanoscale Res. Lett. 12, 447, 10 pp (2017)CrossRefGoogle Scholar
  38. 38.
    J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. J. Chem. Soc. Chem. Commun. 48, 3686–3699 (2012)CrossRefGoogle Scholar
  39. 39.
    W. Dai, Y. Lei, M. Xu, et al., Rare-earth free self-activated graphene quantum dots and copper-cysteamine phosphors for enhanced white light-emitting-diodes under single excitation. Sci. Rep. 7, 12872 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Kocsis, S.W. Cranford, Carbyne: a one dimensional carbon allotrope, in Carbon Nanomaterials Sourcebook. Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites, ed. by K. D. Sattler (Ed), vol. II, (CRC Press, Boca Raton, FL, USA, 2016), pp. 3–25CrossRefGoogle Scholar
  41. 41.
    J.M. Alred, N. Gupta, M. Liu, Z. Zhang, B.I. Yakobson, Mechanics of materials creation: nanotubes, graphene, carbyne, borophenes. 2016 IUTAM Symposium on Nanoscale Physical Mechanics. Procedia IUTAM 21, 17–24 (2017)CrossRefGoogle Scholar
  42. 42.
    C.R. Ma, J. Xiao, G.W. Yang, Giant nonlinear optical responses of carbyne. J. Mater. Chem. C 4, 4692–4698 (2016)CrossRefGoogle Scholar
  43. 43.
    L. Shi, P. Rohringer, K. Suenaga, et al., Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 15, 634–640 (2016)CrossRefGoogle Scholar
  44. 44.
    B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: the one-dimensional sp carbon. Sci. Adv. 1(9), e1500857 (2015)CrossRefGoogle Scholar
  45. 45.
    E.A. Belenkov, V.V. Mavrinsky, Crystal structure of a perfect carbyne. Crystallogr. Rep. 53(1), 83–87 (2008)CrossRefGoogle Scholar
  46. 46.
    G.M. Demyashev, A.L. Taube, E. Siores, Surface modification of titanium carbide with carbyne-containing nanocoatings. J. Nanosci. Nanotechnol. 2(2), 133–137 (2002)CrossRefGoogle Scholar
  47. 47.
    Q. Sun, L. Cai, S. Wang, Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138(4), 1106–1109 (2016)CrossRefGoogle Scholar
  48. 48.
    A.K. Nair, S.W. Cranford, M.J. Buehler, The minimal nanowire: mechanical properties of carbyne. EPL 95, 16002, 5 pp (2011)CrossRefGoogle Scholar
  49. 49.
    M. Wang, S. Lin, Ballistic thermal transport in carbyne and cumulene with micron-scale spectral acoustic phonon mean free path. Sci. Rep. 5, 18122 (2015)CrossRefGoogle Scholar
  50. 50.
    S. Kotrechko, I. Mikhailovskij, T. Mazilova, E. Sadanov, A. Timoshevskii, N. Stetsenko, Y. Matviychuk, Mechanical properties of carbyne: experiment and simulations. Nanoscale Res. Lett. 10, 24 (2015)CrossRefGoogle Scholar
  51. 51.
    Y. NuLi, Q. Chen, W. Wang, et al., Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries. Sci. World J. 2014, 107918, 7 pp (2014)CrossRefGoogle Scholar
  52. 52.
    F. Cataldo, Y. Keheyan, Generation of higher fullerenes from laser ablation of carbyne and C60 photopolymer astrochemical implications. Fullerenes, Nanotubes, Carbon Nanostruct. 10, 99–106 (2002)CrossRefGoogle Scholar
  53. 53.
    S. Kotrechko, A. Timoshevskii, E. Kolyvoshko, Y. Matviychuk, N. Stetsenko, Thermomechanical stability of carbyne-based nanodevices. Nanoscale Res. Lett. 12, 327 (2017)CrossRefGoogle Scholar
  54. 54.
    F. Banhart, Chains of carbon atoms: a vision or a new nanomaterial? Beilstein J. Nanotechnol. 6, 559–569 (2015)CrossRefGoogle Scholar
  55. 55.
    L. Shen, M. Zeng, S.-W. Yang, C. Zhang, X. Wang, Y. Feng, Electron transport properties of atomic carbon nanowires between graphene electrodes. J. Am. Chem. Soc. 132(33), 11481–11486 (2010)CrossRefGoogle Scholar
  56. 56.
    R.Y. Oeiras, E.Z. da Silva, Bond length and electric current oscillation of long linear carbon chains: density functional theory, MpB model, and quantum spin transport studies. J. Chem. Phys. 140, 134703 (2014)CrossRefGoogle Scholar
  57. 57.
    G. Onida, N. Manini, L. Ravagnan, E. Cinquanta, D. Sangalli, P. Milani, Vibrational properties of sp carbon atomic wires in cluster-assembled carbon films. Phys. Status Solidi 247(8), 2017–2021 (2010)CrossRefGoogle Scholar
  58. 58.
    C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)CrossRefGoogle Scholar
  59. 59.
    C.S. Casari, C.S. Giannuzzi, V. Russo, Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas. Carbon 104, 190–195 (2016)CrossRefGoogle Scholar
  60. 60.
    O. Cretu, A.R. Botello-Mendez, I. Janowska, et al., Electrical transport measured in atomic carbon chains. Nano Lett. 13, 3487–3493 (2013)CrossRefGoogle Scholar
  61. 61.
    N. Tayebi, Y. Narui, R.J. Chen, C.P. Collier, K.P. Giapis, Y. Zhang, Nanopencil as a wear-tolerant probe for ultrahigh density data storage. Appl. Phys. Lett. 93(10), 103112/1–103112/3 (2008)CrossRefGoogle Scholar
  62. 62.
    A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2, 156–161 (2007)CrossRefGoogle Scholar
  63. 63.
    Y. Tian, D. Chassaing, A.G. Nasibulin, P. Ayala, H. Jiang, A.S. Anisimov, A. Hassanien, E.I. Kauppinen, The local study of a nanoBud structure. Phys. Status Solidi B 245(10), 2047–2050 (2008)CrossRefGoogle Scholar
  64. 64.
  65. 65.
    B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez, Handbook of Less-Common Nanostructures (CRC Press, 2012), 862 ppGoogle Scholar
  66. 66.
    A.G. Nasibulin, A.S. Anisimov, P.V. Pikhitsa, H. Jiang, D.P. Brown, M. Choi, E.I. Kauppinen, Investigations of NanoBud formation. Chem. Phys. Lett. 446, 109–114 (2007)CrossRefGoogle Scholar
  67. 67.
    A. Anisimov, Aerosol synthesis of carbon nanotubes and nanobuds. Ph.D. thesis, Aalto University, Finland, 2010Google Scholar
  68. 68.
    R.J. Nicholls, J. Britton, S. Shayan Meysami, A.A. Koos, N. Grobert, In situ engineering of NanoBud geometries. Chem. Commun. 49, 10956–10958 (2013)CrossRefGoogle Scholar
  69. 69.
    M. Ghorbanzadeh Ahangari, M.D. Ganji, F. Montazar, Mechanical and electronic properties of carbon nanobuds: first-principles study. Solid State Commun. 203, 58–62 (2015)CrossRefGoogle Scholar
  70. 70.
    H.Y. He, B.C. Pan, Electronic structures and Raman features of a carbon Nanobud. J. Phys. Chem. C 113, 20822–20826 (2009)CrossRefGoogle Scholar
  71. 71.
    X. Wu, X. Cheng Zeng, First-principles study of a carbon Nanobud. ACS Nano 287, 1459–1465 (2008)CrossRefGoogle Scholar
  72. 72.
    J. Il Choi, H. Seok Kim, H. Seul Kim, G. In Lee, J.K. Kang, Y.-H. Kim, Carbon nanobuds based on carbon nanotube caps: a first-principles study. Nanoscale 8, 2343–2349 (2016)CrossRefGoogle Scholar
  73. 73.
    X. Yang, L. Wang, Y. Huang, Z. Han, A.C. To, Carbon nanotube–fullerene hybrid nanostructures by C60 bombardment: formation and mechanical behavior. Phys. Chem. Chem. Phys. 16(39), 21615–21619 (2014)CrossRefGoogle Scholar
  74. 74.
    X. Yang, L. Wang, Y. Huang, A.C. To, B. Cao, Effects of nanobuds and heat welded nanobuds chains on mechanical behavior of carbon nanotubes. Comput. Mater. Sci. 109, 49–55 (2015)CrossRefGoogle Scholar
  75. 75.
    X. Zhu, H. Su, Magnetism in hybrid carbon nanostructures: Nanobuds. Phys. Rev. B 79, 165401 (2009)CrossRefGoogle Scholar
  76. 76.
    J. Yazdani, A. Bahrami, Topological index of carbon Nanobud. Aust. J. Basic Appl. Sci. 4(8), 3575–3577 (2010)Google Scholar
  77. 77.
    Z. Haseeb, A. Kumari, Study of the optical properties of SWCNT and nanobuds. IJECT 6(4), 45–48 (2015)Google Scholar
  78. 78.
    S. Gorantla, F. Börrnert, A. Bachmatiuk, M. Dimitrakopoulou, R. Schönfelder, F. Schäffel, J. Thomas, T. Gemming, E. Borowiak-Palen, J.H. Warner, B.I. Yakobson, J. Eckert, B. Büchnera, M.H. Rümmeli, In situ observation of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2, 2077–2079 (2010)CrossRefGoogle Scholar
  79. 79.
    Y. Tian. Optical Properties of Single-walled Carbon Nanotubes and Nanobuds. Ph.D. Thesis, Aalto University, 2012Google Scholar
  80. 80.
    Y. Tian, Combined Raman spectroscopy and transmission electron microscopy studies of a NanoBud structure. J. Am. Chem. Soc. 130, 7188–7189 (2008)CrossRefGoogle Scholar
  81. 81.
    X.X. Yang, Z.F. Zhou, Y. Wang, J.W. Li, N.G. Guo, W.T. Zheng, J.Z. Peng, C.Q. Sun, Raman spectroscopic determination of the length, energy, Debye temperature, and compressibility of the C–C bond in carbon allotropes. Chem. Phys. Lett. 575, 86–90 (2013)CrossRefGoogle Scholar
  82. 82.
    P. Havu, A. Sillanpaa, N. Runeberg, J. Tarus, E.T. Seppala, R.M. Nieminen, Effects of chemical functionalization on electronic transport in carbon nanobuds. Phys. Rev. B 85, 115446 (2012)CrossRefGoogle Scholar
  83. 83.
    W. Koh, J. Hye Lee, S. Geol Lee, J. Il Choic, S. Soon Jang, Li adsorption on a graphene–fullerene nanobud system: density functional theory approach. RSC Adv. 5, 32819–32825 (2015)CrossRefGoogle Scholar
  84. 84.
    H.W. Kroto, The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329, 529–531 (1987)CrossRefGoogle Scholar
  85. 85.
    H.W. Kroto, C60B buckminsterfullerene, other fullerenes and the icospiral shell. Comp. Math. Appl. 17(1–3), 417–423 (1989)CrossRefGoogle Scholar
  86. 86.
    P.W. Dunk, N.K. Kaiser, M. Mulet-Gas, A. Rodríguez-Fortea, J.M. Poblet, H. Shinohara, C.L. Hendrickson, A.G. Marshall, H.W. Kroto, The smallest stable Fullerene, M@C28 (M = Ti, Zr, U): stabilization and growth from carbon vapor. J. Am. Chem. Soc. 134(22), 9380–9389 (2012)CrossRefGoogle Scholar
  87. 87.
    X. Lu, Z. Chen, Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643–3696 (2005)CrossRefGoogle Scholar
  88. 88.
    G.C. Loha, D. Baillargeat, Thermal transport in C20 fullerene-chained carbon nanobuds. J. Appl. Phys. 113, 123504 (2013)CrossRefGoogle Scholar
  89. 89.
    E.F. Sheka, L.Kh. Shaymardanova, C60-based composites in view of topochemical reactions. III. C60 + graphene nanobuds. arXiv:1106.0644 [cond-mat.mtrl-sci], Cornell University Library, 2011Google Scholar
  90. 90.
    A. Fereidoon, M. Khorasani, M. Darvish Ganji, F. Memarian, Atomistic simulation study of mechanical properties of periodic graphene nanobuds. Comput. Mater. Sci. 107, 163–169 (2015)CrossRefGoogle Scholar
  91. 91.
    M.B.E. Griffiths, S.E. Koponen, D.J. Mandia, J.F. McLeod, J.P. Coyle, J.J. Sims, J.B. Giorgi, E.R. Sirianni, G.P.A. Yap, S.T. Barry, Surfactant directed growth of gold metal nanoplates by chemical vapor deposition. Chem. Mater. 27, 6116–6124 (2015)CrossRefGoogle Scholar
  92. 92.
    C. Deng, W. Ma, J.-L. Sun, Fabrication of highly rough Ag nanobud substrates and surface-enhanced raman scattering of λ-DNA molecules. J. Nanomater 2012, 820739, 5 pp (2012)Google Scholar
  93. 93.
    D.S. Choi, A.O. Fung, H. Moon, G. Villareal, Y. Chen, D. Ho, N. Presser, G. Stupian, M. Leung, Detection of neural signals with vertically grown single platinum nanowire-nanobud. J. Nanosci. Nanotechnol. 9(11), 6483–6486(4) (2009)CrossRefGoogle Scholar
  94. 94.
    R. Colin Johnson, Carbon nanobuds flex, replace indium tin oxide. Unique nanobuds stretch, bend, flex. http://www.eetimes.com/document.asp?doc_id=1324698. Accessed May 5, 2016
  95. 95.
    D.P. Brown, B.J. Aitchison, Uses of a carbon nanobud molecule and devices comprising the same. EP 2308112 A1, 2011; WO 2009156596 A1, 2009Google Scholar
  96. 96.
    D.P. Brown, B.J. Aitchison, Uses of a carbon nanobud molecule and devices comprising the same. Patent US 20110127488, 2011Google Scholar
  97. 97.
    I.V. Anoshkin, A.G. Nasibulin, P.R. Mudimela, M. He, V. Ermolov, E.I. Kauppinen, Single-walled carbon nanotube networks for ethanol vapor sensing applications. Nano Res. 6(2), 77–86 (2013)CrossRefGoogle Scholar
  98. 98.
    D. E. Luzzi. Synthesis, structure, and properties of fullerene and nonfullerene nanopeapods, in Abstracts of Papers, 225th ACS National Meeting, New Orleans, 23–27 March 2003, COLL-370Google Scholar
  99. 99.
    T. Okazaki, H. Shinohara, Nano-peapods encapsulating fullerenes, in Applied Physics of Carbon Nanotubes, ed. by S. V. Rotkin, S. Subramoney (Eds), (Springer, New York, 2005), pp. 133–150Google Scholar
  100. 100.
    T. Okazaki, S. Okubo, T. Nakanishi, S.-K. Joung, T. Saito, M. Otani, S. Okada, S. Bandow, S. Iijima, Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. J. Am. Chem. Soc. 130, 4122–4128 (2008)CrossRefGoogle Scholar
  101. 101.
    Q. Wang, R. Kitaura, Y. Yamamoto, S. Arai, H. Shinohara, Synthesis and TEM structural characterization of C60-flattened carbon nanotube nanopeapods. Nano Res. 7(12), 1843–1848 (2014)CrossRefGoogle Scholar
  102. 102.
    Y. Cho, S. Han, G. Kim, H. Lee, J. Ihm, Orbital hybridization and charge transfer in carbon nanopeapods. Phys. Rev. Lett. 90(10), 106402/1–106402/4 (2003)CrossRefGoogle Scholar
  103. 103.
    T. Yumura, M. Kertesz, S. Iijima, Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes. J. Phys. Chem. B 111(5), 1099–1109 (2007)CrossRefGoogle Scholar
  104. 104.
    R. Kitaura, H. Shinohara, Carbon-nanotube-based hybrid materials. Nanopeapods. Chem. Asian J. 1(5), 646–655 (2006)CrossRefGoogle Scholar
  105. 105.
    A.N. Enyashin, A.L. Ivanovskii, Atomic structure and electronic properties of nanopeapods: isomers of endohedral dititanofullerenes Ti2@C80 in carbon nanotubes. Zh. Neorg. Khim. 51(9), 1576–1585 (2006)Google Scholar
  106. 106.
    I.V. Krive, R. Ferone, R.I. Shekhter, M. Jonson, P. Utko, J. Nygaard, The influence of electro-mechanical effects on resonant electron tunneling through small carbon nano-peapods. New J. Phys. 10(Apr.), 043043 (2008)CrossRefGoogle Scholar
  107. 107.
    D. Baowan, N. Thamwattana, J.M. Hill, Encapsulation of C60 fullerenes into single-walled carbon nanotubes: Fundamental mechanical principles and conventional applied mathematical modeling. Phys. Rev. B: Condens. Matter Mater. Phys. 76(15), 155411/1–155411/8 (2007)CrossRefGoogle Scholar
  108. 108.
    A. Gloter, K. Suenaga, H. Kataura, R. Fujii, T. Kodama, H. Nishikawa, I. Ikemoto, K. Kikuchi, S. Suzuki, Y. Achiba, S. Iijima, Structural evolutions of carbon nano-peapods under electron microscopic observation. Chem. Phys. Lett. 390(4–6), 462–466 (2004)CrossRefGoogle Scholar
  109. 109.
    R. Pati, L. Senapati, P.M. Ajayan, S.K. Nayak, Theoretical study of electrical transport in a fullerene-doped semiconducting carbon nanotubes. J. Appl. Phys. 95(2), 694–697 (2004)CrossRefGoogle Scholar
  110. 110.
    Y. Liu, R.O. Jones, X. Zhao, Y. Ando, Carbon species confined inside carbon nanotubes: A density functional study. Phys. Rev. B: Condens. Matter Mater. Phys. 68(12), 125413/1–125413/7 (2003)Google Scholar
  111. 111.
    H. Terrones, Beyond Carbon Nanopeapods. ChemPhysChem 13(9), 2273–2276 (2012)CrossRefGoogle Scholar
  112. 112.
    S. Rols, J. Cambedouzou, M. Chorro, H. Schober, V. Agafonov, P. Launois, V. Davydov, A.V. Rakhmanina, H. Kataura, J.-L. Sauvajol, How confinement affects the dynamics of C60 in carbon nanopeapods. Phys. Rev. Lett. 101(6), 065507/1–065507/4 (2008)CrossRefGoogle Scholar
  113. 113.
    E. Hernandez, V. Meunier, B.W. Smith, R. Rurali, H. Terrones, M. Buongiorno Nardelli, M. Terrones, D.E. Luzzi, J.-C. Charlier, Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3(8), 1037–1042 (2003)CrossRefGoogle Scholar
  114. 114.
    J.H. Warner, Y. Ito, M. Zaka, L. Ge, T. Akachi, H. Okimoto, K. Porfyrakis, A.A.R. Watt, H. Shinohara, G.A.D. Briggs, Rotating fullerene chains in carbon nanopeapods. Nano Lett. 8(8), 2328–2335 (2008)CrossRefGoogle Scholar
  115. 115.
    A.N. Sohi, R. Naghdabadi, Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure. Physica E Low Dimens. Syst. Nanostruct. 41(3), 513–517 (2009)CrossRefGoogle Scholar
  116. 116.
    L. Cui, Y. Feng, X. Zhang, Dependence of thermal conductivity of carbon nanopeapods on filling ratios of fullerene molecules. J. Phys. Chem. A 119(45), 11226–11232 (2015)CrossRefGoogle Scholar
  117. 117.
    L. Guan, K. Suenaga, S. Okubo, T. Okazaki, S. Iijima, Metallic wires of lanthanum atoms inside carbon nanotubes. J. Am. Chem. Soc. 130(7), 2162–2163 (2008)CrossRefGoogle Scholar
  118. 118.
    K. Suenaga, R. Taniguchi, T. Shimada, T. Okazaki, H. Shinohara, S. Iijima, Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod. Nano Lett. 3(10), 1395–1398 (2003)CrossRefGoogle Scholar
  119. 119.
    R. Kitaura, H. Okimoto, H. Shinohara, Magnetism of the endohedral metallofullerenes M@C82 (M=Gd, Dy) and the corresponding nanoscale peapods: Synchrotron soft x-ray magnetic circular dichroism and density-functional theory calculations. Phys. Rev. B 76, 172409 (2007)CrossRefGoogle Scholar
  120. 120.
    Y. Sato, K. Suenaga, S. Bandow, S. Iijima, Site-dependent migration behavior of individual cesium ions inside and outside C60 fullerene nanopeapods. Small 4(8), 1080–1083 (2008)CrossRefGoogle Scholar
  121. 121.
    K. Urita, Y. Sato, K. Suenaga, A. Gloter, A. Hashimoto, M. Ishida, T. Shimada, H. Shinohara, S. Iijima, Defect-induced atomic migration in carbon nanopeapod: tracking the single-atom dynamic behavior. Nano Lett. 4(12), 2451–2454 (2004)CrossRefGoogle Scholar
  122. 122.
    A. Trave, F.J. Ribeiro, S.G. Louie, M.L. Cohen, Energetics and structural characterization of C60 polymerization in BN and carbon nanopeapods. Phys. Rev. 70, 205418 (2004)CrossRefGoogle Scholar
  123. 123.
    V. Timoshevskii, M. Cote, Doping of C60-induced electronic states in BN nanopeapods: Ab initio simulations. Phys. Rev. B: Condens. Matter Mater. Phys. 80(23), 235418/1–235418/5 (2009)CrossRefGoogle Scholar
  124. 124.
    X. Li, W. Yang, B. Liu, Fullerene coalescence into metallic heterostructures in boron nitride nanotubes: a molecular dynamics study. Nano Lett. 7(12), 3709–3715 (2007)CrossRefGoogle Scholar
  125. 125.
    S. Tsuruoka, H. Matsumoto, V. Castranov, et al., Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: classification by physical and chemical structures. Carbon 95, 302–308 (2015)CrossRefGoogle Scholar
  126. 126.
    J. Su, Y. Gao, R. Che, Synthesis and microstructure of Fe3C encapsulated inside chain-like carbon nanocapsules. Mater. Lett. 64(6), 680–683 (2010)CrossRefGoogle Scholar
  127. 127.
    D.B. Dougherty, W. Jin, W.G. Cullen, G. Dutton, J.E. Reutt-Robey, S.W. Robey, Local transport gap in C60 nanochains on a pentacene template. Phys. Rev. B: Condens. Matter Mater. Phys. 77(7), 073414/1–073414/4 (2008)CrossRefGoogle Scholar
  128. 128.
    M. Zhang, C. He, E. Liu, et al., Activated carbon nanochains with tailored micro-meso pore structures and their application for supercapacitors. J. Phys. Chem. C 119(38), 21810–22181 (2015)CrossRefGoogle Scholar
  129. 129.
    B. Sahu, H. Min, S.K. Banerjee, Effects of magnetism and electric field on the energy gap of bilayer graphene nanobars. arXiv.org, e-Print Archive, Condensed Matter, 2009, 1–6, arXiv:0910.2719v1 [cond-mat.mtrl-sci]. Publisher: Cornell University LibraryGoogle Scholar
  130. 130.
    T. Krupenkin, Nanograss, nanobricks, nanonails, and other things useful in your nanolandscaping, in Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, 22–26 Mar 2009, POLY-333Google Scholar
  131. 131.
    S.K. Sonkar, M. Saxena, M. Saha, S. Sarkar, Carbon nanocubes and nanobricks from pyrolysis of rice. J. Nanosci. Nanotechnol. 10(6), 4064–4067 (2010)CrossRefGoogle Scholar
  132. 132.
    X. Wang, C.-m. Zhao, T. Deng, et al., From amorphous carbon to carbon nanobelts and vertically oriented graphene nanosheets synthesized by plasma-enhanced chemical vapor deposition. Chem. Res. Chin. Univ. 29(4), 755–758 (2013)CrossRefGoogle Scholar
  133. 133.
    X. Lu, J. Wu, After 60 years of efforts: the chemical synthesis of a carbon nanobelt. Chem 2(5), 619–620 (2017)CrossRefGoogle Scholar
  134. 134.
    J. Liu, M. Shao, Q. Tang, S. Zhang, Y. Qian, Synthesis of carbon nanotubes and nanobelts through a medial-reduction method. J. Phys. Chem. B 107, 6329–6332 (2003)CrossRefGoogle Scholar
  135. 135.
    X. Sun, Z. Xing, R. Ning, A.M. Asiri, A.Y. Obaid, Carbon nanobelts as a novel sensing platform for fluorescence-enhanced DNA detection. Analyst 139, 2318–2321 (2014)CrossRefGoogle Scholar
  136. 136.
    C.-T. Lin, T.-H. Chen, T.-S. Chin, C.-Y. Lee, H.-T. Chiu, et al., Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon 46, 741–746 (2008)CrossRefGoogle Scholar
  137. 137.
    T. Ouyang, K. Cheng, F. Yang, et al., From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. J. Mater. Chem. A 5, 14551–14561 (2017)CrossRefGoogle Scholar
  138. 138.
    Q. Xia, H. Zhao, Z. Du, et al., Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim. Acta 180, 947–956 (2015)CrossRefGoogle Scholar
  139. 139.
    Q. Zhao, L. Jiao, W. Peng, et al., Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J. Power Sources 199, 350–354 (2012)CrossRefGoogle Scholar
  140. 140.
    C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13, 1700834, 12 pp (2017)CrossRefGoogle Scholar
  141. 141.
    G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Synthesis of a carbon nanobelt. Science 356, 172–175 (2017)CrossRefGoogle Scholar
  142. 142.
    K. Matsui, M. Fushimi, Y. Segawa, K. Itami, Synthesis, structure, and reactivity of a cylinder-shaped cyclo[12]orthophenylene[6]ethynylene: toward the synthesis of zigzag carbon nanobelts. Org. Lett. 18, 5352–5355 (2016)CrossRefGoogle Scholar
  143. 143.
    Y. Segawa, A. Yagi, H. Ito, K. Itami, A theoretical study on the strain energy of carbon nanobelts. Org. Lett. 18, 1430–1433 (2016)CrossRefGoogle Scholar
  144. 144.
    Y. Ren, G. Pastorin, Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv. Mater. 20(11), 2031–2036 (2008)CrossRefGoogle Scholar
  145. 145.
    A.V. Vakhrushev, M.V. Suyetin, Methane storage in bottle-like nanocapsules. Nanotechnology 20, 125602 (2009)CrossRefGoogle Scholar
  146. 146.
    R.K. Lee, J.M. Hill, Design parameters for carbon nanobottles to absorb and store methane. J. Nanosci. Nanotechnol. 11(8), 6893–6903 (2011)CrossRefGoogle Scholar
  147. 147.
    J. Li, S.L. Yoong, W.J. Goh, et al., In vitro controlled release of cisplatin from gold-carbon nanobottles via cleavable linkages. Int. J. Nanomedicine 10, 7425–7441 (2015)Google Scholar
  148. 148.
    N. Yang, G. Zhang, B. Li, Carbon nanocone: A promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008)CrossRefGoogle Scholar
  149. 149.
    M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, A method for computing the Wiener index of one-pentagonal carbon nanocones. Curr. Nanosci. 6(2), 155–157 (2010)CrossRefGoogle Scholar
  150. 150.
    E. Brito, A. Freitas, T. Silva, T. Guerra, S. Azevedo, Double-walled carbon nanocones: stability and electronic structure. Eur. Phys. J. B. 88, 153 (2015)CrossRefGoogle Scholar
  151. 151.
    I. Levchenko, K. Ostrikov, J. Khachan, S.V. Vladimirov, Growth of carbon nanocone arrays on a metal catalyst: the effect of carbon flux ionization. Phys. Plasmas 15, 103501 (2008)CrossRefGoogle Scholar
  152. 152.
    R. Ansari, A. Momen, S. Rouhi, S. Ajori, On the vibration of single-walled carbon nanocones: molecular mechanics approach versus molecular dynamics simulations. Shock. Vib. 2014, 410783, 8 pp (2014)Google Scholar
  153. 153.
    S. Rouhi, R. Ansariy, S. Nickabadiz, Modal analysis of double-walled carbon nanocones using the nite element method. Int. J. Mod. Phys. B 31, 1750262, 18 pp (2017)CrossRefGoogle Scholar
  154. 154.
    W. Huang, J. Xu, X. Lu, Tapered carbon nanocone tips obtained by dynamic oxidation in air. RSC Adv. 6, 25541–25548 (2016)CrossRefGoogle Scholar
  155. 155.
    I.-C. Chen, L.-H. Chen, X.-R. Ye, C. Daraio, S. Jin, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102 (2006)CrossRefGoogle Scholar
  156. 156.
    S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology. Sci. Technol. Adv. Mater. 10(6), 065002 (2009)CrossRefGoogle Scholar
  157. 157.
    A. Pauly, M. Dubois, K. Guerin, A. Hamwi, J. Brunet, C. Varenne, B. Lauron, Use of carbon nanomaterials as a filtration material impermeable to ozone. WO 2010000956, 2010, 20 ppGoogle Scholar
  158. 158.
    R. Majidi, Adsorption of ternary mixture of noble gases on carbon nanocone: molecular dynamics simulation. Nanosci. Nanotechnol. Lett. 5(7), 750–753 (2013)CrossRefGoogle Scholar
  159. 159.
    S.A. Aal, A.S. Shalabi, K.A. Soliman, High capacity hydrogen storage in Ni decorated carbon nanocone: a first-principles study. J. Quan. Inf. Sci 5, 134–149 (2015)Google Scholar
  160. 160.
    S. Moradi, Deuterium adsorption on Multi Carbon Nano-cone (MNCx, X=2-7) including BN Nano-cone: a model for D2 storage. Orient. J. Chem. 31(3), 1355–1364 (2015)CrossRefGoogle Scholar
  161. 161.
    O.O. Adisa, B.J. Cox, J.M. Hill, Open carbon nanocones as candidates for gas storage. J. Phys. Chem. C 115, 24528–24533 (2011)CrossRefGoogle Scholar
  162. 162.
    M.-L. Li, F. Lin, Y. Chen, Study on the mechanical properties of carbon nanocones using molecular dynamics simulation. Acta Phys. Sin. 62(1), 016102 (2013)Google Scholar
  163. 163.
    E. Vessally, F. Behmagham, B. Massoumi, A. Hosseinian, L. Edjlali, Carbon nanocone as an electronic sensor for HCl gas: quantum chemical analysis. Vacuum 134, 40–47 (2016)CrossRefGoogle Scholar
  164. 164.
    M.T. Baei, A. Ahmadi Peyghan, Z. Bagheri, Carbon nanocone as an ammonia sensor: DFT studies. Struct. Chem. 24, 1099–1103 (2013)CrossRefGoogle Scholar
  165. 165.
    L.B. Sheridana, D.K. Hensley, N.V. Lavrik, et al., Growth and electrochemical characterization of carbon nanospike thin film electrodes. J. Electrochem. Soc. 161(9), H558–H563 (2014)CrossRefGoogle Scholar
  166. 166.
    A.G. Zestos, C. Yang, C.B. Jacobs, D. Hensley, B.J. Venton, Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Analyst 140, 7283–7292 (2015)CrossRefGoogle Scholar
  167. 167.
    A.S. Shanta, K.A. Al Mamun, S.K. Islam, N. McFarlane, Carbon nanotubes, nanofibers and nanospikes for electrochemical sensing: a review. Int. J. High Speed Electron. Syst. 26(3), 1740008, 12 pp (2017)CrossRefGoogle Scholar
  168. 168.
    Y. Song, R. Peng, D.K. Hensley, et al., High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016)CrossRefGoogle Scholar
  169. 169.
    J. Zhou, Nanowicking: multi-scale flow interaction with nanofabric structures, Ph.D. Thesis, California Institute of Technology, 2005, 129 ppGoogle Scholar
  170. 170.
    T. Ichihashi, J.-i. Fujita, M. Ishida, Y. Ochiai, In situ observation of carbon-nanopillar tubulization caused by liquidlike iron particles. Phys. Rev. Lett. 92(21), 215702, 4 pp (2004)CrossRefGoogle Scholar
  171. 171.
    K. Sai Krishna, M. Eswaramoorthy, Novel synthesis of carbon nanorings and their characterization. Chem. Phys. Lett. 433, 327–330 (2007)CrossRefGoogle Scholar
  172. 172.
    C. Pozrikidis, Structure of carbon nanorings. Comput. Mater. Sci. 43, 943–950 (2008)CrossRefGoogle Scholar
  173. 173.
    H. Ding, J.P. Maier, Electronic structures of one-dimension carbon nano wires and rings. J. Phys. Conf. Ser. 61, 252–256 (2007)CrossRefGoogle Scholar
  174. 174.
    S.G. dos Santos, J. Mendes Filho, V.N. Freire, E.W.S. Caetano, E.L. Albuquerque, Carbon-based nanorings sliding along inner coaxial nanotubes: Mobius topology effects in damping gigahertz oscillations. J. Appl. Phys. 116, 124311, 5 pp (2014)CrossRefGoogle Scholar
  175. 175.
    E.G. Fedorov, N.N. Yanyushkina, M.B. Belonenko, Terahertz radiation from carbon nanorings in external collinear constant and varying electric fields. Tech. Phys. 58(4), 584–588 (2013)CrossRefGoogle Scholar
  176. 176.
    G. Shi, J. Zhang, Y. He, S. Ju, D. Jiang, Thermal conductivity of carbon nanoring linked graphene sheets: a molecular dynamics investigation. Chin. Phys. B 26(10), 106502, 6 pp (2017)CrossRefGoogle Scholar
  177. 177.
    K. Yin Cheung, S. Yang, Q. Miao, From tetrabenzoheptafulvalene to sp2 carbon nano-rings. Org. Chem. Front. 4, 699–703 (2017)CrossRefGoogle Scholar
  178. 178.
    B.M. Wong, Optoelectronic properties of carbon nanorings: excitonic effects from time-dependent density functional theory. J. Phys. Chem. C 113, 21921–21927 (2009)CrossRefGoogle Scholar
  179. 179.
    H. Omachi, Y. Segawa, K. Itami, Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45(8), 1378–1389 (2012)CrossRefGoogle Scholar
  180. 180.
    R. Franklin-Mergarejo, D. Ondarse Alvarez, S. Tretiak, S. Fernandez-Alberti, Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics. Sci. Rep. 6, 31253, 11 pp (2016)CrossRefGoogle Scholar
  181. 181.
    T. Kawase, M. Oda, Complexation of carbon nanorings with fullerenes. Pure Appl. Chem. 78(4), 831–839 (2006)CrossRefGoogle Scholar
  182. 182.
    K. Miki, T. Matsushita, Y. Inoue, et al., Electron-rich carbon nanorings as macrocyclic hosts for fullerenes. Chem. Commun. 49, 9092–9094 (2013)CrossRefGoogle Scholar
  183. 183.
    T. Kawase, K. Tanaka, Y. Seirai, N. Shiono, M. Oda, Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew. Chem. Int. Ed. 42, 5597–5600 (2003)CrossRefGoogle Scholar
  184. 184.
    N. Chen, M.T. Lusk, A.C.T. van Duin, W.A. Goddard III, Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 72, 085416 (2005)CrossRefGoogle Scholar
  185. 185.
    V. Alamian, A. Bahrami, B. Edalatzade, PI polynomial of V-phenylenic nanotubes and nanotori. Int. J. Mol. Sci. 9, 229–234 (2008)CrossRefGoogle Scholar
  186. 186.
    Y. Chel Kwun, M. Munir, W. Nazeer, S. Rafique, S. Min Kang, M-polynomials and topological indices of V-phenylenic nanotubes and nanotori. Sci. Rep. 7, 8756, 9 pp (2016)CrossRefGoogle Scholar
  187. 187.
    A.T. Balaban, D.J. Klein, Claromatic carbon nanostructures. J. Phys. Chem. C 113, 19123–19133 (2009)CrossRefGoogle Scholar
  188. 188.
    J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, C. Dekker, Fullerene ‘crop circles’. Nature 385, 780–781 (1997)CrossRefGoogle Scholar
  189. 189.
    T.A. Hilder, J.M. Hill, Orbiting atoms and C60 fullerenes inside carbon nanotori. J. Appl. Phys. 101, 064319 (2007)CrossRefGoogle Scholar
  190. 190.
    P.C. Chuang, J. Guan, D. Witalka, et al., Relative stability and local curvature analysis in carbon nanotori. Phys. Rev. B 91, 165433 (2015)CrossRefGoogle Scholar
  191. 191.
    B.J. Cox, J.M. Hill, New carbon molecules in the form of elbow-connected nanotori. J. Phys. Chem. C 111, 10855–10860 (2007)CrossRefGoogle Scholar
  192. 192.
    F. Koorepazan-Moftakhar, A. RezaAshrafi, O. Ori, M.V. Putz, Geometry and topology of nanotubes and nanotori, in Exotic Properties of Carbon Nanomatter, Carbon Materials: Chemistry and Physics, ed. by M. V. Putz, O. Ori (Eds), (Springer, Dordrecht, 2015), pp. 131–152Google Scholar
  193. 193.
    S. Madani, A.R. Ashrafi, The energies of (3,6)-fullerenes and nanotori. Appl. Math. Lett. 25(12), 2365–2368 (2012)CrossRefGoogle Scholar
  194. 194.
    C.P. Liu, J.W. Ding, Electronic structure of carbon nanotori: the roles of curvature, hybridization, and disorder. J. Phys. Condens. Matter 18, 4077–4084 (2006)CrossRefGoogle Scholar
  195. 195.
    C.P. Liu, Zeeman effect on the electronic structure of carbon nanotori in a strong magnetic field. Int. J. Mod. Phys. B 22(27), 4845–4852 (2008)CrossRefGoogle Scholar
  196. 196.
    Y.Y. Chou, G.-Y. Guo, Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes. J. Appl. Phys. 96(4), 2249–2253 (2004)CrossRefGoogle Scholar
  197. 197.
    J.A. Rodriguez-Manzo, F. Lopez-Urias, M. Terrones, H. Terrones, Magnetism in corrugated carbon nanotori: the importance of symmetry, defects, and negative curvature. Nano Lett. 4(11), 2179–2183 (2004)CrossRefGoogle Scholar
  198. 198.
    L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88(12), 217206, 4 pp (2002)CrossRefGoogle Scholar
  199. 199.
    E. Taşci, E. Yazgan, O.B. Malcıoğlu, Ş. Erkoç, Stability of carbon nanotori under heat treatment: molecular-dynamics simulations. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 147–154 (2005)CrossRefGoogle Scholar
  200. 200.
    M. Tonigold, J. Hitzbleck, S. Bahnmueller, G. Langstein, D. Volkmer, Copper (II) Nanoballs as monomers for polyurethane coatings: synthesis, urethane derivatization and kinetic stability. Dalton Trans. (8), 1363–1371 (2009)Google Scholar
  201. 201.
    S.E. Iyuke, T.A. Mamvura, K. Liu, V. Sibanda, M. Meyyappan, V.K. Varadan, Process synthesis and optimization for the production of carbon nanostructures. Nanotechnology 20(37), 375602/1–375602/10 (2009)CrossRefGoogle Scholar
  202. 202.
    S. Lee, J. Hong, J.H. Koo, et al., Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl. Mater. Interfaces 5(7), 2432–2437 (2013)CrossRefGoogle Scholar
  203. 203.
    K.S. Chetna, A. Kapoor. Effect of annealing on structural and optical properties of graphene nanoballs. in: Recent Trends in Materials and Devices, ed by V. Jain, S. Rattan, A. Verma. Springer Proceedings in Physics (Springer, New York, 2017), vol. 178Google Scholar
  204. 204.
    N. Kumar, A. Shukla, J. Singh, M.K. Patra, P. Ghosal, S.R. Vadera, Simple route for synthesis of multilayer graphene nanoballs by flame combustion of edible oil. Graphene 1(1), 63–67 (2013)CrossRefGoogle Scholar
  205. 205.
    T. Das, B.K. Saikia, B.P. Baruah, Formation of carbon nano-balls and carbon nano-tubes from northeast Indian Tertiary coal: Value added products from low grade coal. Gondwana Res. 31, 295–304 (2016)CrossRefGoogle Scholar
  206. 206.
    Y. Xie, Q. Huang, B. Huang, X. Xie, Low temperature synthesis of high quality carbon nanospheres through the chemical reactions between calcium carbide and oxalic acid. Mater. Chem. Phys. 124(1), 482–487 (2010)CrossRefGoogle Scholar
  207. 207.
    D. Wei, Y. Zhang, J. Fu, Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles. Beilstein J. Nanotechnol. 8, 1897–1908 (2017)CrossRefGoogle Scholar
  208. 208.
    B. Liu, L. Jin, H. Zheng, H. Yao, Y. Wu, A. Lopes, J. He, Ultrafine co-based nanoparticle@mesoporous carbon nanospheres toward high-performance supercapacitors. ACS Appl. Mater. Interfaces 9(2), 1746–1758 (2017)CrossRefGoogle Scholar
  209. 209.
    F. Ghaemi, L. Chuah Abdullah, P. Tahir, Core/shell structure of Ni/NiO encapsulated in carbon nanosphere coated with few- and multi-layered graphene: synthesis, mechanism and application. Polymers 8, 381 (2016)CrossRefGoogle Scholar
  210. 210.
    Y. Hao, S. Wang, Q. Sun, L. Shi, A.-H. Lu, Uniformly dispersed Pd nanoparticles on nitrogen-doped carbon nanospheres for aerobic benzyl alcohol oxidation. Chin. J. Catal. 36, 612–619 (2015)CrossRefGoogle Scholar
  211. 211.
    Y. Yang, M. Qiu, L. Liu, D. Su, Y. Pi, G. Yan, Nitrogen-doped hollow carbon nanospheres derived from dopamine as high-performance anode materials for sodium-ion batteries. NANO: Brief Rep. Rev. 11(11), 1650124, 9 pp (2016)CrossRefGoogle Scholar
  212. 212.
    W. Armstrong, B. Sapkota, S.R. Mishra, Silver decorated carbon nanospheres as effective visible light photocatalyst, in MRS Proceedings, 2013, Volume 1509, mrsf12-1509-cc09-38Google Scholar
  213. 213.
    L.P. Bakos, N. Justh, K. Hernádi, et al., Core-shell carbon nanosphere-TiO2 composite and hollow TiO2 nanospheres prepared by atomic layer deposition. J. Phys. Conf. Ser. 764, 012005 (2016)CrossRefGoogle Scholar
  214. 214.
    W. Niu, L. Li, X. Liu, et al., One-pot synthesis of graphene/carbon nanospheres/graphene sandwich supported Pt3Ni nanoparticles with enhanced electrocatalytic activity in methanol oxidation. Int. J. Hydrog. Energy 40, 5106–5114 (2015)CrossRefGoogle Scholar
  215. 215.
    P. Karna, M. Ghimire, S. Mishra, S. Karna, Synthesis and characterization of carbon nanospheres. Open Access Library Journal 4, e3619 (2017)Google Scholar
  216. 216.
    A.N. Mohan, B. Manoj, Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int. J. Electrochem. Sci. 7, 9537–9549 (2012)Google Scholar
  217. 217.
    M. Ibrahim Mohammed, R. Ismaeel Ibrahim, L. Hussein Mahmoud, M. Abdulahad Zablouk, N. Manweel, A. Mahmoud, Characteristics of carbon nanospheres prepared from locally deoiled asphalt. Adv. Mater. Sci. Eng. 2013, 356769, 5 pp (2013)CrossRefGoogle Scholar
  218. 218.
    H. Kristianto, C.D. Putra, A.A. Arie, M. Halim, J.K. Lee, Synthesis and characterization of carbon nanospheres using cooking palm oil as natural precursors onto activated carbon support. Procedia Chem. 16, 328–333 (2015)CrossRefGoogle Scholar
  219. 219.
    D. Guo, X. Chen, H. Wei, et al., Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries. J. Mater. Chem. A 5, 6245–6256 (2017)CrossRefGoogle Scholar
  220. 220.
    L. Zhang, P. Wang, W. Zheng, X. Jiang, Hollow carbon nanospheres for targeted delivery of chemotherapeutics in breast cancer therapy. J. Mater. Chem. B 5, 6601–6607 (2017)CrossRefGoogle Scholar
  221. 221.
    Y.-W. Jiang, G. Gao, X. Zhang, H.-R. Jia, F.-G. Wu, Antimicrobial carbon nanospheres. Nanoscale 9, 15786–15795 (2017)CrossRefGoogle Scholar
  222. 222.
    R. Vié, E. Drahi, O. Baudino, S. Blayac, S. Berthon-Fabry, Synthesis of carbon nanospheres for the development of inkjetprinted resistive layers and sensors. Flex. Print. Electron 1, 015003 (2016)CrossRefGoogle Scholar
  223. 223.
    H. Zhao, F. Zhang, S. Zhang, et al., Scalable synthesis of Sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 11(4), 1822–1833 (2018)CrossRefGoogle Scholar
  224. 224.
    J. Saini, M. Kumar, K. Anshu, S. Singh, S. Singh Kamal, G. Kaur, S.L. Harikumar, Future prospectives of nano onions: a review. Int. J. Curr. Med. Pharma. Res. 2(3), 222–234 (2016)Google Scholar
  225. 225.
    J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)CrossRefGoogle Scholar
  226. 226.
    A.N. Papathanassiou, M.E. Plonska-Brzezinska, O. Mykhailiv, L. Echegoyen, I. Sakellis, Combined high permittivity and high electrical conductivity of carbon nano-onion/polyaniline composites. Synth. Met. 209, 583–587 (2015)CrossRefGoogle Scholar
  227. 227.
    D.M. Bobrowska, K. Brzezinski, L. Echegoyen, M.E. Plonska-Brzezinska, A new perspective on carbon nano-onion/nickel hydroxide/oxide composites: Physicochemical properties and application in hybrid electrochemical systems. Fullerenes, Nanotubes, Carbon Nanostruct. 25(3), 193–203 (2017)CrossRefGoogle Scholar
  228. 228.
    J. Bartelmess, M. Frasconi, P.B. Balakrishnan, A. Signorellia, L. Echegoyen, T. Pellegrino, S. Giordani, Non-covalent functionalization of carbon nano-onions with pyrene-BODIPY dyads for biological imaging. RSC Adv. 5, 50253–50258 (2015)CrossRefGoogle Scholar
  229. 229.
    D.M. Bobrowska, J. Czyrko, K. Brzezinski, L. Echegoyen, M.E. Plonska-Brzezinska, Carbon nano-onion composites: physicochemical characteristics and biological activity. Fullerenes, Nanotubes, Carbon Nanostruct. 25(3), 185–192 (2017)CrossRefGoogle Scholar
  230. 230.
    M.E. Plonska-Brzezinska, A. Molina-Ontori, L. Echegoyen, Post-modification by low-temperature annealing of carbon nano-onions in the presence of carbohydrates. Carbon 67, 304–317 (2014)CrossRefGoogle Scholar
  231. 231.
    L. Zhou, C. Gao, D. Zhu, et al., Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and “grafting from” strategy. Chem. Eur. J. 15, 1389–1396 (2009)CrossRefGoogle Scholar
  232. 232.
    S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen, D.F. O'Shea, NIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging. J. Mater. Chem. B 2, 7459–7463 (2014)CrossRefGoogle Scholar
  233. 233.
    C.T. Cioffi, A. Palkar, F. Melin, et al., Carbon nano-onion–ferrocene donor–acceptor system:synthesis, characterization and properties. Chem. Eur. J. 15, 4419–4427 (2009)CrossRefGoogle Scholar
  234. 234.
    D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)CrossRefGoogle Scholar
  235. 235.
    J.K. McDonough, A.I. Frolov, V. Presser, J. Niu, C.H. Miller, T. Ubieto, M.V. Federov, Y. Gogotsi, Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon 50(9), 3298–3309 (2012)CrossRefGoogle Scholar
  236. 236.
    J.K. McDonough, Y. Gogotsi, Carbon onions: synthesis and electrochemical applications. Electrochem. Soc. Interface 22(3), 61–66 (2013)CrossRefGoogle Scholar
  237. 237.
    P. Bystrzejewski, M.H. Rummeli, T. Gemming, H. Lange, A. Huczco, Catalyst-free synthesis of onion-like carbon nanoparticles. New Carbon Mater. 25(1), 1–8 (2010)CrossRefGoogle Scholar
  238. 238.
    Y. Zheng, P. Zhu, Carbon nano-onions: large-scale preparation, functionalization and their application as anode material for rechargeable lithium ion batteries. RSC Adv. 6, 92285–92298 (2016)CrossRefGoogle Scholar
  239. 239.
    T. Garcia-Martin, P. Rincon-Arevalo, G. Campos-Martin, Method to obtain carbon nano-onions by pyrolisys of propane. Cent. Eur. J. Phys. 11(11), 1548–1558 (2013)Google Scholar
  240. 240.
    W.-k. Zhang, J.-j. Fu, J. Chang, M. Zhang, Y.-q. Yang, L.-z. Gao, Fabrication and purification of carbon nano onions. New Carbon Mater. 29(5), 398–403 (2014)Google Scholar
  241. 241.
    F.-D. Han, B. Yao, Y.-J. Bai, Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries. J. Phys. Chem. C 115, 8923–8927 (2011)CrossRefGoogle Scholar
  242. 242.
    C. Zhang, J. Li, C. Shi, C. He, E. Liu, N. Zhao, Self-anchored catalysts for substrate-free synthesis of metal-encapsulated carbon nano-onions and study of their magnetic properties. Nano Res. 9(4), 1159–1172 (2016)CrossRefGoogle Scholar
  243. 243.
    N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga, Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys. 92(5), 2783–2788 (2002)CrossRefGoogle Scholar
  244. 244.
    O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, J. Jiang, Preparation of carbon nano-onions by the low-temperature unfolding of MWCNTs via interaction with theraphthal. RSC Adv. 5, 57764–57770 (2015)CrossRefGoogle Scholar
  245. 245.
    O.L. Kaliya, E.A. Luk’yanets, On the article about the component composition of Theraphthal preparation. Pharm. Chem. J. 43(10), 587–587 (2009)CrossRefGoogle Scholar
  246. 246.
    M.S. Goizman, E.V. Degterev, K.F. Turchin, A.P. Arzamastsev, Quality control of theraphthal production. 1. Chemical composition. Pharm. Chem. J. 41(12), 670–675 (2007)CrossRefGoogle Scholar
  247. 247.
    Patent of Russian Federation 2106146 (1995)Google Scholar
  248. 248.
    M.E. Volpin, Agent for suppressing tumor growth, U.S. Patent 6,004,953, 1999Google Scholar
  249. 249.
    Patent of Japan 3672928, 2005Google Scholar
  250. 250.
    Canada application for a patent 2200220, 1996Google Scholar
  251. 251.
    Antitumor composition comprising ascorbic acid and metal complexes of (na)phthalocyanines. EP 0786253 (1997)Google Scholar
  252. 252.
    A.L. Nikolaev, A.V. Gopin, V.E. Bozhevolnov, S.E. Mazina, A.V. Severin, V.N. Rudin, N.V. Andronova, E.M. Treschalina, O.L. Kaliya, L.I. Solovyeva, E.A. Lukyanets, Sonodynamic therapy of cancer. A comprehensive experimental study. Russ. Chem. Bull. 63(5), 1 (2014)CrossRefGoogle Scholar
  253. 253.
    O.V. Kharissova, J. Rodríguez, B.I. Kharisov, Non-standard ROS-generating combination “theraphthal–ascorbic acid” in low-temperature transformations of carbon allotropes. Chem. Pap. (2018). https://doi.org/10.1007/s11696-018-0571-y
  254. 254.
    Y. Yao, X. Wang, J. Guo, X. Yang, B. Xu, Tribological property of onion-like fullerenes as lubricant additive. Mater. Lett. 62(16), 2524–2527 (2008)CrossRefGoogle Scholar
  255. 255.
    S. Erkoc, Stability of carbon nanoonion C20@C60@C240: molecular dynamics simulations. Nano Lett. 2(3), 215–217 (2002)CrossRefGoogle Scholar
  256. 256.
    M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, et al., The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon 49(15), 5079–5089 (2011)CrossRefGoogle Scholar
  257. 257.
    Y. Gao, Y. Shen Zhou, M. Qian, et al., Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51, 52–58 (2013)CrossRefGoogle Scholar
  258. 258.
    Y.A. Goh, X. Chen, F. Md Yasin, et al., Shear flow assisted decoration of carbon nano-onions with platinum nanoparticles. Chem. Commun. 49, 5171–5173 (2013)CrossRefGoogle Scholar
  259. 259.
    O. Mykhailiv, K. Brzezinski, B. Sulikowski, et al., Boron-doped polygonal carbon nano-onions: synthesis and applications in electrochemical energy storage. Chem. Eur. J. 23, 7132–7141 (2017)CrossRefGoogle Scholar
  260. 260.
    E.Y. Choi, C.K. Kim, Fabrication of nitrogendoped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep. 7, 4178 (2017)CrossRefGoogle Scholar
  261. 261.
    Y. Liu, R.L.V. Wal, V.N. Khabashesku, Functionalization of carbon nano-onions by direct fluorination. Chem. Mater. 19, 778–786 (2007)CrossRefGoogle Scholar
  262. 262.
    J. Luszczyn, M.E. Plonska-Brzezinska, A. Palkar, A.T. Dubis, A. Simionescu, D.T. Simionescu, B. Kalska-Szostko, K. Winkler, L. Echegoyen, “Small” noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules. Chem. Eur. J. 16, 4870–4880 (2010)CrossRefGoogle Scholar
  263. 263.
    A.M. Panich, V.Y. Osipov, K. Takai, Diamagnetism of carbon onions probed by NMR of adsorbed water. Carbon 82, 608–610 (2015)CrossRefGoogle Scholar
  264. 264.
    A.M. Panich, V.Y. Osipov, K. Takai, Diamagnetism of carbon onions probed by NMR of adsorbed water. New Carbon Mater. 29(5), 392–397 (2014)CrossRefGoogle Scholar
  265. 265.
    H.G. Baldoví, J.R. Herance, V.M. Víctor, M. Alvaro, H. Garcia, Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings. Nanoscale 7, 12484–12491 (2015)CrossRefGoogle Scholar
  266. 266.
    G. Moussa, C. Matei Ghimbeu, P.-L. Taberna, P. Simon, C. Vix-Guterl, Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon 105, 628–637 (2016)CrossRefGoogle Scholar
  267. 267.
    E.W. Bucholz, S.R. Phillpot, S.B. Sinnott, Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Comput. Mater. Sci. 54, 91–96 (2012)CrossRefGoogle Scholar
  268. 268.
    V. Marchesano, A. Ambrosone, J. Bartelmess, F. Strisciante, A. Tino, L. Echegoyen, C. Tortiglione, S. Giordani, Impact of carbon nano-onions on hydra vulgaris as a model organism for nanoecotoxicology. Nano 5, 1331–1350 (2015)Google Scholar
  269. 269.
    M. Frasconi, V. Maffeis, J. Bartelmess, L. Echegoyen, S. Giordani, Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods Appl. Fluoresc. 3, 044005 (2015)CrossRefGoogle Scholar
  270. 270.
    A. Camisasca, S. Giordani, Carbon nano-onions in biomedical applications: promising theranostic agents. Inorg. Chim. Acta 468, 67 (2017)CrossRefGoogle Scholar
  271. 271.
    M.-S. Wang, D. Golberg, Y. Bando, Carbon “onions” as point electron sources. ACS Nano 4(8), 4396–4402 (2010)CrossRefGoogle Scholar
  272. 272.
    A. Pramanik, S. Biswas, A.K. Kole, C.S. Tiwary, R.N. Krishnarajd, P. Kumbhakar, Template-free hydrothermal synthesis of amphibious fluorescent carbon nanorice towards anti-counterfeiting applications and unleashing its nonlinear optical properties. RSC Adv. 6, 99060–99071 (2016)CrossRefGoogle Scholar
  273. 273.
    P.S. Parasuraman, H.-C. Tsai, T. Imae, In-situ hydrothermal synthesis of carbon nanorice using Nafion as a template. Carbon 77, 660–666 (2014)CrossRefGoogle Scholar
  274. 274.
    Q. Wu, L. Yang, X. Wang, Z. Hu, From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50(2), 435–444 (2017)CrossRefGoogle Scholar
  275. 275.
    K. Matsui, Y. Segawa, K. Itami, All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure. J. Am. Chem. Soc. 136(46), 16452–16458 (2014)CrossRefGoogle Scholar
  276. 276.
    Y. Li, C. Zhou, X. Xie, G. Shi, L. Qu, Spontaneous, catalyst-free formation of nitrogen-doped graphitic carbon nanocages. Carbon 48(14), 4190–4196 (2010)CrossRefGoogle Scholar
  277. 277.
    Y. Tan, C. Xu, G. Chen, et al., Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 5(6), 2241–2248 (2013)CrossRefGoogle Scholar
  278. 278.
    C.-K. Tsai, H.Y. Kang, C.-I. Hong, et al., Preparation of hollow spherical carbon nanocages. J. Nanopart. Res. 14, 1315 (2012)CrossRefGoogle Scholar
  279. 279.
    R. Zhang, M. Hummelgard, H. Olin, Carbon nanocages grown by gold templating. Carbon 48, 424–430 (2010)CrossRefGoogle Scholar
  280. 280.
    S. Xiang, Y. Shi, K. Zhang, et al., Design and synthesis of dodecahedral carbon nanocages incorporated with Fe3O4. RSC Adv. 7, 13257–13262 (2017)CrossRefGoogle Scholar
  281. 281.
    E. Petala, Y. Georgiou, V. Kostas, et al., Magnetic carbon nanocages: an advanced architecture with surface- and morphology-enhanced removal capacity for arsenites. ACS Sustain. Chem. Eng. 5(7), 5782–5792 (2017)CrossRefGoogle Scholar
  282. 282.
    H. Qin, Y. Huang, S. Liu, et al., Synthesis and properties of magnetic carbon nanocages particles for dye removal. J. Nanomater. 2015, 604201, 8 pp (2015)Google Scholar
  283. 283.
    J.T. Li, A mild method prepared carboxy carbon nanocage. Adv. Mater. Res. 560–561, 742–746 (2012)Google Scholar
  284. 284.
    S. Liu, Z. Wang, S. Zhou, et al., Metal–organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29(31), 1700874 (2017)CrossRefGoogle Scholar
  285. 285.
    Y. Jiang, L. Yang, T. Sun, et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5, 6707–6712 (2015)CrossRefGoogle Scholar
  286. 286.
    Z. Lyu, L. Yang, D. Xu, et al., Hierarchical carbon nanocages as high-rate anodes for Li-and Na-ion batteries. Nano Res 8(11), 3535–3543 (2015)CrossRefGoogle Scholar
  287. 287.
    M.J. Armstrong, D.M. Burke, et al., Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1, 12568–12578 (2013)CrossRefGoogle Scholar
  288. 288.
    A. Vinu, M. Miyahara, T. Mori, K. Ariga, Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. J. Porous. Mater. 13(3–4), 379–383 (2006)CrossRefGoogle Scholar
  289. 289.
    K.K.R. Datta, A. Vinu, S. Mandal, et al., Carbon nanocage: super-adsorber of intercalators for DNA protection. J. Nanosci. Nanotechnol. 11(4), 3084–3090 (2011)CrossRefGoogle Scholar
  290. 290.
    C.X. Guo, Z.M. Sheng, Y.Q. Shen, Z.L. Dong, C.M. Li, Thin-walled graphitic nanocages as a unique platform for amperometric glucose biosensor. ACS Appl. Mater. Interfaces 2(9), 2481–2484 (2010)CrossRefGoogle Scholar
  291. 291.
    M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ 2, 218–245 (2017)CrossRefGoogle Scholar
  292. 292.
    H. Zhang, X. Zhang, X. Sun, Y. Ma, Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide. Sci. Rep. 3, 3534 (2013)CrossRefGoogle Scholar
  293. 293.
    L. Cao, Z.-h. Li, Y. Gu, Rational design of N-doped carbon nanobox-supported Fe/Fe2N/Fe3C nanoparticles as efficient oxygen reduction catalysts for Zn–air batteries. J. Mater. Chem. A 5, 11340–11347 (2017)CrossRefGoogle Scholar
  294. 294.
    J. Xiang, T. Song, One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage. Chem. Commun. 53, 10820–10823 (2017)CrossRefGoogle Scholar
  295. 295.
    H. Hu, J. Zhang, B. Guan, X.W. (David) Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. 55(33), 9514–9518 (2016)CrossRefGoogle Scholar
  296. 296.
    M. Zheng, Y. Liu, S. Zhao, W. He, Y. Xiao, D. Yuan, Simple shape-controlled synthesis of carbon hollow structures. Inorg. Chem. 49(19), 8674–8683 (2010)CrossRefGoogle Scholar
  297. 297.
    B. Quan, G.-E. Nam, H. Jae Choi, Y. Piao, Synthesis of monodisperse hollow carbon nanocapsules by using protective silica shells. Chem. Asian J. 8(4), 765–770 (2013)CrossRefGoogle Scholar
  298. 298.
    U. Narkiewicz, M. Podsiadly, R. Jedrzejewski, I. Pelech, Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials. Appl. Catal. A Gen. 384(1–2), 27–35 (2010)CrossRefGoogle Scholar
  299. 299.
    X.G. Liu, Z.Q. Ou, D.Y. Geng, Z. Han, H. Wang, B. Li, E. Brueck, Z.D. Zhang, Enhanced absorption bandwidth in carbon-coated supermalloy FeNiMo nanocapsules for a thin absorb thickness. J. Alloys Compd. 506(2), 826–830 (2010)CrossRefGoogle Scholar
  300. 300.
    H. Kuratani, Y. Fujiwara, K. Maeda, T. Kobayashi, M. Jimbo, Synthesis of carbon nanocapsules containing Fe produced by discharge in ethanol. J. Magn. Soc. Jpn. 37(3–2), 206–209 (2013)CrossRefGoogle Scholar
  301. 301.
    Y. Liu, J. Su, Synthesis and characterization of MgO-filled rectangular carbon nanocapsules. Adv. Mater. Res. 785-786, 444–448 (2013)CrossRefGoogle Scholar
  302. 302.
    P. Wu, N. Du, H. Zhang, J. Yu, D. Yang, Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated iron and iron oxides: magnetic properties and reversible lithium storage. J. Phys. Chem. C 115, 3612–3620 (2011)CrossRefGoogle Scholar
  303. 303.
    S. Kim, R. Sergiienko, E. Shibata, T. Nakamura, Iron-included carbon nanocapsules coated with biocompatible poly(ethylene glycol) shells. Mater. Chem. Phys. 122, 164–168 (2010)CrossRefGoogle Scholar
  304. 304.
    T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 613746, 6 (2012)Google Scholar
  305. 305.
    D. Han, G. Song, B. Liu, H. Yan, Core–shell-structured nickel ferrite/onion-like carbon nanocapsules: an anode material with enhanced electrochemical performance for lithium-ion batteries. RSC Adv. 5, 42875–42880 (2015)CrossRefGoogle Scholar
  306. 306.
    Y. Suna, C. Feng, X. Liu, S. Wing Orc, C. Jin, Synthesis, characterization and microwave absorption of carbon-coated Cu nanocapsules. Mater. Res. 17(2), 477–482 (2014)CrossRefGoogle Scholar
  307. 307.
    E. Hu, J. Ning, B. He, et al., Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. J. Mater. Chem. A 5, 2271–2279 (2017)CrossRefGoogle Scholar
  308. 308.
    H. Wang, C. Chen, Y. Zhang, et al., In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion. Nat. Commun. 6, 7181 (2015)CrossRefGoogle Scholar
  309. 309.
    A.C.L. Tang, G.-L. Hwang, S.-J. Tsai, et al., Biosafety of non-surface modified carbon nanocapsules as a potential alternative to carbon nanotubes for drug delivery purposes. PLoS One 7(3), e32893 (2012)CrossRefGoogle Scholar
  310. 310.
    Y.-F. Lan, S.-C. Cheng, Dispersion of carbon nanocapsules by using highly aspect-ratio clays. Appl. Phys. Lett. 100, 153109 (2012)CrossRefGoogle Scholar
  311. 311.
    O.V. Kharissova, B.I. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, New York, 2017), 250 ppCrossRefGoogle Scholar
  312. 312.
    Y. Hayashi, N. Takada, W. Diono, H. Kanda, M. Goto, One-step synthesis of water–dispersible carbon nanocapsules by pulsed arc discharge over aqueous solution under pressurized argon. Res. Chem. Intermed. 43, 4201–4211 (2017)CrossRefGoogle Scholar
  313. 313.
    A. Guven, I.A. Rusakova, M.T. Lewis, L.J. Wilson, Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 33(5), 1455–1461 (2012)CrossRefGoogle Scholar
  314. 314.
    H. Ge, P.J. Riss, V. Mirabello, et al., Behavior of supramolecular assemblies of radiometal-filled and fluorescent carbon nanocapsules in vitro and in vivo. Chem 3, 437–460 (2017)CrossRefGoogle Scholar
  315. 315.
    N. Mittal, R. Kumar, G. Mishra, D. Deva, A. Sharma, Mesoporous carbon nanocapsules based coatings with multifunctionalities. Adv. Mater. Interfaces 3(10), 1500708 (2016)CrossRefGoogle Scholar
  316. 316.
    H.-S. Chien, C. Wang, Effects of temperature and carbon nanocapsules (CNCs) on the production of Poly(D,L-lactic acid) (PLA) nonwoven nanofibre mat. Fibres Text. East. Eur 97(1), 72–77 (2013)Google Scholar
  317. 317.
    P. Gentile, T. David, F. Dhalluin, D. Buttard, N. Pauc, M. Den Hertog, P. Ferret, T. Baron, The growth of small diameter silicon nanowires to nanotrees. Nanotechnology 19(12), 125608/1–125608/5 (2008)CrossRefGoogle Scholar
  318. 318.
  319. 319.
    F. Sola, O. Resto, A. Biaggi-Labiosa, L.F. Fonseca, Growth and characterization of branched carbon nanostructures arrays in nano-patterned surfaces from porous silicon substrates. Micron 40, 80–84 (2009)CrossRefGoogle Scholar
  320. 320.
    Z. Yao, X. Zhu, X. Li, Y. Xie, Synthesis of novel Y-junction hollow carbon nanotrees. Carbon 45(7), 1566–1570 (2007)CrossRefGoogle Scholar
  321. 321.
    G. Liu, Y. Zhao, K. Zheng, Z. Liu, W. Ma, Y. Ren, S. Xie, L. Sun, Coulomb explosion: a novel approach to separate single-walled carbon nanotubes from their bundle. Nano Lett. 9(1), 239–244 (2009)CrossRefGoogle Scholar
  322. 322.
    M. Haba, Fuel cell using carbon-metal nanotree electrocatalyst. 2006, JP 2006294493 (11 pp)Google Scholar
  323. 323.
    Z. He, J.-L. Maurice, C. Seok Lee, C.S. Cojocaru, D. Pribat, Growth mechanisms of carbon nanostructures with branched carbon nanofibers synthesized by plasma-enhanced chemical vapour deposition. CrystEngComm 16, 2990–2995 (2014)CrossRefGoogle Scholar
  324. 324.
    F. Sola, O. Resto, A.M. Biaggi-Labiosa, L.F. Fonseca, Electron-beam induced growth of silica nanowires and silica/carbon heterostructures. Mater. Res. Soc. Symp. Proc. (2007), 1017E (Low-Dimensional Materials--Synthesis, Assembly, Property Scaling, and Modeling), Paper #: 1017-DD12-31Google Scholar
  325. 325.
    F. Sola, O. Resto, A. Biaggi-Labiosa, L.F. Fonseca, Electron-beam induced growth of silica nanorods and heterostructures in porous silicon. Nanotechnology 18, 405308 (2007)CrossRefGoogle Scholar
  326. 326.
    L. Chen, C. Xu, R. Du, et al., Rational design of three-dimensional nitrogendoped carbon nanoleaf networks for highperformance oxygen reduction. J. Mater. Chem. A 3, 5617–5627 (2015)CrossRefGoogle Scholar
  327. 327.
    T.-N. Ye, L.-B. Lv, X.-H. Li, M. Xu, J.-S. Chen, Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem. 126, 7025–7029 (2014)CrossRefGoogle Scholar
  328. 328.
    X. Ma, B. Yuan, Fabrication of carbon nanoflowers by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 255(18), 7846–7850 (2009)CrossRefGoogle Scholar
  329. 329.
    H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R.V. Kumar, G.A.J. Amaratunga, T.D. Wilkinson, Cylindrical Fresnel lenses based on carbon nanotube forests. Appl. Phys. Lett. 101(24), 243116 (2012)CrossRefGoogle Scholar
  330. 330.
    T. Saleh, M. Vahdani Moghaddam, M. Sultan Mohamed Ali, M. Dahmardeh, C. Alden Foell, A. Nojeh, K. Takahata, Transforming carbon nanotube forest from darkest absorber to reflective mirror. Appl. Phys. Lett. 101, 061913 (2012)CrossRefGoogle Scholar
  331. 331.
    H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qu, L. Dai, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater. Sci. Eng. R. Rep. 70, 63–91 (2010)CrossRefGoogle Scholar
  332. 332.
    N. Hayashi, S.-I. Honda, K. Tsui, K.-Y. Lee, T. Ikuno, K. Fujimoto, S. Ohkura, M. Katayama, K. Oura, T. Hirao, Highly aligned carbon nanotube arrays fabricated by bias sputtering. Appl. Surf. Sci. 212–213, 393–396 (2003)CrossRefGoogle Scholar
  333. 333.
    C. Daraio, V.F. Nesterenko, S. Jin, Impact response by a foamlike forest of coiled carbon nanotubes. J. Appl. Phys. 100, 064309, 4 pp (2006)CrossRefGoogle Scholar
  334. 334.
    Y. Taki, M. Kikuchi, K. Shinohara, A. Tanaka, Selective growth of vertically aligned single-, double-, and triple-walled carbon nanotubes by radiation-heated chemical vapor deposition. Jpn. J. Appl. Phys. 47, 721–724 (2008)CrossRefGoogle Scholar
  335. 335.
    A.M. Cassell, M. Meyyappan, J. Han, Multilayer film assembly of carbon nanotubes. J. Nanopart. Res. 2(4), 387–389 (2000)CrossRefGoogle Scholar
  336. 336.
    Q. Zhang, W. Zhou, W. Qian, R. Xiang, J. Huang, D. Wang, F. Wei, Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J. Phys. Chem. C 111, 14638–14643 (2007)CrossRefGoogle Scholar
  337. 337.
    X. Li, A. Cao, Y.J. Jung, R. Vajtai, P.M. Ajayan, Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett. 5, 1997–2000 (2005)CrossRefGoogle Scholar
  338. 338.
    S. Huang, L. Dai, A.W.H. Mau, Nanotube “crop circles”. J. Mater. Chem. 9, 1221–1222 (1999)CrossRefGoogle Scholar
  339. 339.
    C.K. Tan, K.P. Loh, T.T.L. John, Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest. Analyst 133, 448–451 (2008)CrossRefGoogle Scholar
  340. 340.
    S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang, D. Zhu, Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes. J. Phys. Chem. B 106(36), 9274–9276 (2002)CrossRefGoogle Scholar
  341. 341.
    M.R. Maschmann, Integrated simulation of active carbon nanotube forest growth and mechanical compression. Carbon 86, 26–37 (2015)CrossRefGoogle Scholar
  342. 342.
    E.G. Rakov, Materials made of carbon nanotubes. The carbon nanotube forest. Russ. Chem. Rev. 82(6), 538–566 (2013)CrossRefGoogle Scholar
  343. 343.
    M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L'Hermite, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers. Nano Lett. 5(12), 2394–2398 (2005)CrossRefGoogle Scholar
  344. 344.
    R. Xiang, G. Luo, Z. Yang, Q. Zhang, W. Qian, F. Wei, Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology 18(41), 415703 (2007)CrossRefGoogle Scholar
  345. 345.
    Z. Yang, H. Nie, X. Zhou, Z. Yao, S. Huang, X. Chen, Synthesizing a well-aligned carbon nanotube forest with high quality via the nebulized spray pyrolysis method by optimizing ultrasonic frequency. Nano 6, 343–348 (2011)CrossRefGoogle Scholar
  346. 346.
    C. Du, N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17(21), 5314–5318 (2006)CrossRefGoogle Scholar
  347. 347.
    S. Shekhar, P. Stokes, S. Khondaker, Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5(3), 1739–1746 (2011)CrossRefGoogle Scholar
  348. 348.
    P. Diao, Z. Li, Vertically aligned single-walled carbon nanotubes by chemical assembly – methodology, properties, and applications. Adv. Mater. 22, 1430–1449 (2010)CrossRefGoogle Scholar
  349. 349.
    C. Soldano, S. Talapatra, S. Kar, Carbon nanotubes and graphene nanoribbons: potentials for nanoscale electrical interconnects. Electronics 2, 280–314 (2013)CrossRefGoogle Scholar
  350. 350.
    J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 21, 15872–15884 (2011)CrossRefGoogle Scholar
  351. 351.
    E.R. Meshot, D.L. Plata, S. Tawfick, Y. Zhang, E.A. Verploegen, A.J. Hart, Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. ACS Nano 3(9), 2477–2486 (2009)CrossRefGoogle Scholar
  352. 352.
    K. Hasegawa, S. Noda, H. Sugime, K. Kakehi, S. Maruyama, Y. Yamaguchi, Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests. J. Nanosci. Nanotechnol. 8(11), 6123–6128 (2008)CrossRefGoogle Scholar
  353. 353.
    J. Olivares, T. Mirea, B. Díaz-Durán, M. Clement, M. De Miguel-Ramos, J. Sangrador, J. De Frutos, E. Iborra, Growth of carbon nanotube forests on metallic thin films. Carbon 90, 9–15 (2015)CrossRefGoogle Scholar
  354. 354.
    H. Sugime, S. Esconjauregui, L. D'Arsié, J. Yang, A.W. Robertson, R.A. Oliver, S. Bhardwaj, C. Cepek, J. Robertson, Low-temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports. ACS Appl. Mater. Interfaces 7(30), 16819–16827 (2015)CrossRefGoogle Scholar
  355. 355.
    T. Ohashi, T. Shima, Synthesis of vertically aligned single-walled carbon nanotubes with metallic chirality through facet control of catalysts. Carbon 87(1), 453–461 (2016)Google Scholar
  356. 356.
    S. Esconjauregui, M. Fouquet, B.C. Bayer, S. Eslava, S. Khachadorian, S. Hofmann, J. Robertson, Manipulation of the catalyst-support interactions for inducing nanotube forest growth. J. Appl. Phys. 109, 044303 (2011)CrossRefGoogle Scholar
  357. 357.
    C.T. Wirth, C. Zhang, G. Zhong, S. Hofmann, J. Robertson, Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano 3(11), 3560–3566 (2009)CrossRefGoogle Scholar
  358. 358.
    M. Bedewy, E.R. Meshot, H. Guo, E.A. Verploegen, W. Lu, A.J. Hart, Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113(48), 20576–20582 (2009)CrossRefGoogle Scholar
  359. 359.
    R. Siddheswaran, D. Manikandan, R.E. Avila, C.E. Jeyanthi, R.V. Mangalaraja, Formation of carbon nanotube forest over spin-coated Fe2O 3 reduced thin-film by chemical vapor deposition. Fullerenes Nanotubes Carbon Nanostruct. 23(5), 392–398 (2015)CrossRefGoogle Scholar
  360. 360.
    J. Yang, S. Esconjauregui, A.W. Robertson, Y. Guo, T. Hallam, H. Sugime, G. Zhong, G.S. Duesberg, J. Robertson, Growth of high-density carbon nanotube forests on conductive TiSiN supports. Appl. Phys. Lett. 106(8), 083108 (2015)CrossRefGoogle Scholar
  361. 361.
    M. Mohsin Hossain, H. Shima, B.-C. Ku, J. Ryang Hahn, Nanoforests composed of ZnO/C core–shell hexagonal nanosheets: fabrication and growth in a sealed thermolysis reactor and optical properties. J. Mater. Sci. 50, 93–103 (2015)CrossRefGoogle Scholar
  362. 362.
    N. Matsumoto, A. Oshima, S. Sakurai, T. Yamada, M. Yumura, K. Hata, D.N. Futaba, The application of gas dwell time control for rapid single wall carbon nanotube forest synthesis to acetylene feedstock. Nano 5, 1200–1210 (2015)Google Scholar
  363. 363.
    J. Huang, Q. Zhang, M. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2, 872–881 (2009)CrossRefGoogle Scholar
  364. 364.
    M. Zhang, O. O. I. Okoli, H. Hoang Van, Graphene nanoribbons and methods. US Patent 2015/0013896 A1, 2015Google Scholar
  365. 365.
    S. Santhanagopalan, A. Balram, E. Lucas, F. Marcano, D. Desheng Meng, High voltage electrophoretic deposition of aligned nanoforests for scalable nanomanufacturing of electrochemical energy storage devices. Key Eng. Mater. 507, 67–72 (2012)CrossRefGoogle Scholar
  366. 366.
    D.S. Jensen, S.S. Kanyal, N. Madaan, M.A. Vail, A.E. Dadson, M.H. Engelhard, M.R. Linford, Multiwalled carbon nanotube forest grown via chemical vapor deposition from iron catalyst nanoparticles, by XPS. Surf. Sci. Spectra 20, 62–67 (2013)CrossRefGoogle Scholar
  367. 367.
    G. Chen, Y. Seki, H. Kimura, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba, Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition. Sci. Rep. 4, 3804 (2014)CrossRefGoogle Scholar
  368. 368.
    M. Vahdani Moghaddam, P. Yaghoobi, G.A. Sawatzky, A. Nojeh, Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission. ACS Nano 9(4), 4064–4069 (2015)CrossRefGoogle Scholar
  369. 369.
    N.J. Ginga, W. Chen, S.K. Sitaraman, Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66, 57–66 (2014)CrossRefGoogle Scholar
  370. 370.
    J.-W. Jiang, Strain engineering for thermal conductivity of single-walled carbon nanotube forests, Cornell University Library, arXiv:1406.4559Google Scholar
  371. 371.
    P. Pour Shahid Saeed Abadi, S.B. Hutchens, J.R. Greer, B.A. Cola, S. Graham, Buckling-driven delamination of carbon nanotube forests. Appl. Phys. Lett. 102, 223103 (2013)CrossRefGoogle Scholar
  372. 372.
    G. Chen, D.N. Futaba, H. Kimura, S. Sakurai, M. Yumura, K. Hata, Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities. ACS Nano 7(11), 10218–10224 (2013)CrossRefGoogle Scholar
  373. 373.
    P. Joseph, C. Cottin-Bizonne, J.-M. Benoıt, C. Ybert, C. Journet, P. Tabeling, L. Bocquet, Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97, 156104 (2006)CrossRefGoogle Scholar
  374. 374.
    K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Superhydrophobic carbon nanotube forests. Nano Lett. 3(12), 1701–1705 (2003)CrossRefGoogle Scholar
  375. 375.
    R. Kant, M. Birla Singh, Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: deterministic and stochastic morphologies. Phys. Rev. E 88, 052303 (2013)CrossRefGoogle Scholar
  376. 376.
    A. Ozhan Altun, S. Ki Youn, N. Yazdani, T. Bond, H.G. Park, Metal-dielectric-CNT nanowires for femtomolar chemical detection by surface enhanced Raman spectroscopy. Adv. Mater. 25(32), 4377–4377 (2013)CrossRefGoogle Scholar
  377. 377.
    S. Deng, M. Kurttepeli, D.J. Cott, S. Bals, C. Detavernier, Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination. J. Mater. Chem. A 3(6), 2642–2649 (2015)CrossRefGoogle Scholar
  378. 378.
    M.P. Down, A.P. Lewis, L. Jiang, J.W. McBride, A nano-indentation study of the contact resistance and resistivity of a bi-layered Au/multi-walled carbon nanotube composite. Appl. Phys. Lett. 106(10), 101911 (2015)CrossRefGoogle Scholar
  379. 379.
    Y. Yoon, G.S. Lee, K. Yoo, J.-B. Lee, Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 13, 16672–16681 (2013)CrossRefGoogle Scholar
  380. 380.
    E. Gikunoo, A. Abera, E. Woldesenbet, A novel carbon nanofibers grown on glass microballoons immunosensor: a tool for early diagnosis of malaria. Sensors 14, 14686–14699 (2014)CrossRefGoogle Scholar
  381. 381.
    P. Sui, D. Duckworth, G. Weaver, Joints comprising carbon nanoforests. US Patent 2015/0204444 A1, 2015Google Scholar
  382. 382.
    J.H. Taphouse, T.L. Bougher, V. Singh, P.P.S.S. Abadi, S. Graham, B.A. Cola, G.W. Woodruff, Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings. Nanotechnology 24(10), 105401 (2013)CrossRefGoogle Scholar
  383. 383.
    D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 3(8), 2121–2128 (2009)CrossRefGoogle Scholar
  384. 384.
    D.G. Lee, S.J. Park, Y.O. Park, E.I. Ryu, Synthesis of nanostructures by direct growth of carbon nanotubes on micron-sized metal fiber filter and its filtration performance. Hwahak Konghak 45(3), 264–268 (2007)Google Scholar
  385. 385.
    S.J. Park, D.G. Lee, Performance improvement of micron-sized fibrous metal filters by direct growth of carbon nanotubes. Carbon 44(10), 1930–1935 (2006)CrossRefGoogle Scholar
  386. 386.
    T. Ohtani, T. Nishikawa, K. Harada, K. Ikeda, N. Takayama, Novel nanocarbons with a mushroom shape found in glassy carbon powder. J. Alloys Compd. 483(1–2), 491–494 (2009)CrossRefGoogle Scholar
  387. 387.
    X. Peng, K. Koczkur, A. Chen, Synthesis of well-aligned bamboo-like carbon nanotube arrays from ethanol and acetone. J. Phys. D. Appl. Phys. 41(9), 095409/1–095409/6 (2008)CrossRefGoogle Scholar
  388. 388.
    B.I. Kharisov, A review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2(3), 190–200 (2008)CrossRefGoogle Scholar
  389. 389.
    H. Heli, A. Rahi, Synthesis and applications of nanoflowers. Recent Pat. Nanotechnol. 10(2), 86–115 (2016)CrossRefGoogle Scholar
  390. 390.
    C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Chem. 31(1), 5–147 (2003)CrossRefGoogle Scholar
  391. 391.
    J. Du, Z. Liu, Z. Li, B. Han, et al., Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Mater. Lett. 59(4), 456–458 (2005)CrossRefGoogle Scholar
  392. 392.
    S. Thongtem, P. Singjai, T.P.S. Thongtem, Growth of carbon nanoflowers on glass slides using sparked iron as a catalyst. Mater. Sci. Eng. A 423(1), 209–213 (2006)CrossRefGoogle Scholar
  393. 393.
    Y. He, H. Zhao, X. Kong, CN 1962431 A 20070516, 2007Google Scholar
  394. 394.
    J. Xua, K. Houa, Z. Jua, et al., Synthesis and electrochemical properties of carbon dots/manganese dioxide (CQDs/MnO2) nanoflowers for supercapacitor applications. J. Electrochem. Soc. 164(2), A430–A437 (2017)CrossRefGoogle Scholar
  395. 395.
    C. Qian, P. Guo, X. Zhang, et al., Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries. RSC Adv. 6, 93519–93524 (2016)CrossRefGoogle Scholar
  396. 396.
    J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Mignerey, C. Wang, An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11(4), 473–481 (2015)CrossRefGoogle Scholar
  397. 397.
    C.H. Pei, K. Shen, Synthesis of the nitrogen-doped carbon nanotube (NCNT) bouquets and their electrochemical properties. Electrochem. Commun. 35, 80–83 (2013)CrossRefGoogle Scholar
  398. 398.
    B. Nanda Sahoo, K. Balasubramanian, Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique. J. Colloid Interface Sci. 436, 111–121 (2014)CrossRefGoogle Scholar
  399. 399.
    T. Krupenkin, Nanograss, nanobricks, nanonails, and other things useful in your nanolandscaping, in Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, 22–26 Mar 2009, POLY-333Google Scholar
  400. 400.
    M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. (24), 3624–3626 (2009)Google Scholar
  401. 401.
    M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010)CrossRefGoogle Scholar
  402. 402.
    K. Kakehi, S. Noda, S. Maruyama, Y. Yamaguchi, Individuals, grasses, and forests of single- and multi-walled carbon nanotubes grown by supported Co catalysts of different nominal thicknesses. Appl. Surf. Sci. 254(21), 6710–6714 (2008)CrossRefGoogle Scholar
  403. 403.
    M. Luling, G. Matthieu, A. Veneruso, Nanograss gamma detector. Eur. Pat. Appl. EP 2007-103888, 2008(13 pp)Google Scholar
  404. 404.
    X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450°C and their magnetic properties. Carbon. Volume Date 2010 48(2), 365–376 (2009)CrossRefGoogle Scholar
  405. 405.
    L.S. Panchakarla, A. Govindaraj, Carbon nanostructures and graphite-coated metal nanostructures obtained by pyrolysis of ruthenocene and ruthenocene–ferrocene mixtures. Bull. Mater. Sci. 30(1), 23–29 (2007)CrossRefGoogle Scholar
  406. 406.
    S.-C. Wong, E.M. Sutherland, F.M. Uhl, Materials processes of graphite nanostructured composites using ball milling. Mater. Manuf. Process. 21, 159–166 (2006)CrossRefGoogle Scholar
  407. 407.
    J. Gonzalez, J. Herrero, Graphene wormholes: a condensed matter illustration of Dirac fermions in curved space. Nucl. Phys. B B825(3), 426–443 (2009)., Volume Date 2010CrossRefGoogle Scholar
  408. 408.
    Y. Wang, Encapsulation of palladium crystallites in carbon and the formation of wormlike nanostructures. J. Am. Chem. Soc. 116(1), 397–398 (1994)CrossRefGoogle Scholar
  409. 409.
    B. Hu, Q. Zhang, Y. Wang, Pd/graphite as a superior catalyst for the direct synthesis of hydrogen peroxide from H2 and O2. Chem. Lett. 38(3), 256–257 (2009)CrossRefGoogle Scholar
  410. 410.
    L. Sousa Lobo, Intrinsic kinetics in carbon gasification: understanding linearity, “nanoworms” and alloy catalysts. Appl. Catal. B Environ. 148–149, 136–143 (2014)CrossRefGoogle Scholar
  411. 411.
    S.A.C. Carabineiro, L. Sousa Lobo, Understanding the reactions of CO2, NO, and N2O with activated carbon catalyzed by binary mixtures. Energy Fuel 30(9), 6881–6891 (2016)CrossRefGoogle Scholar
  412. 412.
    Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. J. Mater. Chem. 16(29), 2984–2989 (2006)CrossRefGoogle Scholar
  413. 413.
    Y. Zhu, J. Li, M. Wan, L. Jiang, Electromagnetic functional urchin-like hollow carbon spheres carbonized by polyaniline micro/nanostructures containing FeCl3 as a precursor. Eur. J. Inorg. Chem. 2009(19), 2860–2864 (2009), https://onlinelibrary.wiley.com/doi/abs/10.1002/ejic.200900040CrossRefGoogle Scholar
  414. 414.
    J. Shu, Urchin-structured MWNTs/HCS composite as anode material for high-capacity and high-power lithium-ion batteries. Electrochem. Solid-State Lett. 11(12), A219–A222 (2008)CrossRefGoogle Scholar
  415. 415.
    Z.H. Han, B. Yang, S.H. Kim, M.R. Zachariah, Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 18, 105701, 4 pp (2007)CrossRefGoogle Scholar
  416. 416.
    J.M. Romo-Herrera, D.A. Cullen, E. Cruz-Silva, D. Ramirez, B.G. Sumpter, V. Meunier, H. Terrones, D.J. Smith, M. Terrones, The role of sulfur in the synthesis of novel carbon morphologies: from covalent Y-junctions to sea-urchin-like structures. Adv. Funct. Mater. 19(8), 1193–1199 (2009)CrossRefGoogle Scholar
  417. 417.
    J. Chen, F. Cheng, Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42(6), 713–723 (2009)CrossRefGoogle Scholar
  418. 418.
    Y. Wang, G. Xing, Z. Jun Han, Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale 6, 8884–8890 (2014)CrossRefGoogle Scholar
  419. 419.
    Y. Wang, Z. Jun Han, S. Fung Yu, et al., Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 64, 230–236 (2013)CrossRefGoogle Scholar
  420. 420.
    T.-H. Chen, T.-Y. Tsai, K.-C. Hsieh, S.-C. Chang, N.-H. Tai, H.-L. Chen, Two-dimensional metallic nanobowl array transferred onto thermoplastic substrates by microwave heating of carbon nanotubes. Nanotechnology 19(46), 465303/1–465303/6 (2008)Google Scholar
  421. 421.
    J. Huang, Q. Zhang, M. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009)CrossRefGoogle Scholar
  422. 422.
    Y. Tang, B.L. Allen, D.R. Kauffman, A. Star, Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 131(37), 13200–13201 (2009)CrossRefGoogle Scholar
  423. 423.
    H. Chun, M.G. Hahm, Y. Homma, R. Meritz, K. Kuramochi, L. Menon, L. Ci, P.M. Ajayan, Y.J. Jung, Engineering low-aspect ratio carbon nanostructures: nanocups, nanorings, and nanocontainers. ACS Nano 3(5), 1274–1278 (2009)CrossRefGoogle Scholar
  424. 424.
    M. Ohtani, K. Saito, S. Fukuzumi, Synthesis, characterization, redox properties, and photodynamics of donor-acceptor nanohybrids composed of size-controlled cup-shaped nanocarbons and porphyrins. Chem Eur J 15(36), 9160–9168 (2009)., S9160/1-S9160/3CrossRefGoogle Scholar
  425. 425.
    M. Gwan Hahm, A. Leela Mohana Reddy, D.P. Cole, et al., Carbon nanotube–nanocup hybrid structures for high power supercapacitor applications. Nano Lett. 12(11), 5616–5621 (2012)CrossRefGoogle Scholar
  426. 426.
    B. Kumar Gupta, G. Kedawat, P. Kumar, Field emission properties of highly ordered low-aspect ratio carbon nanocup arrays. RSC Adv. 6, 9932–9939 (2016)CrossRefGoogle Scholar
  427. 427.
    A.A. Moosa, F. Kubba, M. Raad, S.A. A. Ramazani, Mechanical and thermal properties of graphene nanoplates and functionalized carbon-nanotubes hybrid epoxy nanocomposites. Am. J. Mater. Sci. 6(5), 125–134 (2016)Google Scholar
  428. 428.
    Y. Soo Yun, S. Youn Cho, J. Shim, et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25(14), 1993–1998 (2013)CrossRefGoogle Scholar
  429. 429.
    S. Lee, M. Eui Lee, M. Yeong Song, et al., Morphologies and surface properties of cellulose-based activated carbon nanoplates. Carbon Lett. 20, 32–38 (2016)CrossRefGoogle Scholar
  430. 430.
    J. Cao, C.J. Jafta, J. Gong, et al., Synthesis of dispersible mesoporous nitrogen-doped hollow carbon nanoplates with uniform hexagonal morphologies for supercapacitors. ACS Appl. Mater. Interfaces 8(43), 29628–29636 (2016)CrossRefGoogle Scholar
  431. 431.
    J.R. Roberts, R.R. Mercer, A.B. Stefaniak, et al., Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphenebased nanomaterial family. Part. Fibre Toxicol. 13(34), 22 (2016)Google Scholar
  432. 432.
    D.N. Futaba, K. Miyake, K. Murata, Y. Hayamizu, T. Yamada, S. Sasaki, M. Yumura, K. Hata, Dual porosity single-walled carbon nanotube material. Nano Lett. 9(9), 3302–3307 (2009)CrossRefGoogle Scholar
  433. 433.
    M.N. Ghasemi-Nejhad, A. Cao. Editor(s): M. Laudon; B. Romanowicz. Development of nanodevices, nanostructures, nanocomposites, and hierarchical nanocomposites at Hawaii Nanotechnology Laboratory. in NSTI Nanotech 2007, Nanotechnology Conference and Trade Show, Santa Clara, 20–24 May 2007, 4, 538–542Google Scholar
  434. 434.
    S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. Pan, Y. Nakayama, Growth of super long aligned brush-like carbon nanotubes. Jpn. J. Appl. Phys. 45(28), L720–L722 (2006)CrossRefGoogle Scholar
  435. 435.
    J. Dinesh, M. Eswaramoorthy, C.N.R. Rao, Use of amorphous carbon nanotube brushes as templates to fabricate GaN nanotube brushes and related materials. J. Phys. Chem. C 111(2), 510–513 (2007)CrossRefGoogle Scholar
  436. 436.
    V. Pushparaj, L. Mahadevan, S. Sreekala, L. Ci, R. Nalamasu, P.M. Ajayan, Deformation and capillary self-repair of carbon nanotube brushes. Carbon 50, 5618–5630 (2012)CrossRefGoogle Scholar
  437. 437.
    W. Marks, S. Yang, G. Dombi, S. Bhatia, Hydrogel composites containing carbon nanobrushes as tissue scaffolds. MRS Proc. 1498, 53–58 (2013)CrossRefGoogle Scholar
  438. 438.
    W. Marks, S. Yang, G. Dombi, S. Bhatia, Carbon nanobrush-containing poloxamer hydrogel. Composites for tissue regeneration. J. Long Term Eff. Med. Implants. 22(3), 229–236 (2012)CrossRefGoogle Scholar
  439. 439.
    Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, F. Moussy, Y. Li, W.I. Milne, Design of carbon nanotube fiber microelectrode for glucose biosensing. Chem. Techn. Biotechnol. 87(2), 256–262 (2012)CrossRefGoogle Scholar
  440. 440.
    J.-G. Fan, J.-X. Fu, A. Collins, Y.-P. Zhao, The effect of the shape of nanorod arrays on the nanocarpet effect. Nanotechnology 19(4), 045713/1–045713/8 (2008)CrossRefGoogle Scholar
  441. 441.
    Y.-P. Zhao, J.-G. Fan, Clusters of bundled nanorods in nanocarpet effect. Appl. Phys. Lett. 88(10), 103123/1–103123/3 (2006)CrossRefGoogle Scholar
  442. 442.
    J.-G. Fan, D. Dyer, G. Zhang, Y.-P. Zhao, Nanocarpet effect: pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett. 4(11), 2133–2138 (2004)CrossRefGoogle Scholar
  443. 443.
    M. Castellino, M. Tortello, S. Bianco, S. Musso, M. Giorcelli, M. Pavese, R.S. Gonnelli, A. Tagliaferro, Thermal and electronic properties of macroscopic multi-walled carbon nanotubes blocks. J. Nanosci. Nanotechnol. 10(6), 3828–3833 (2010)CrossRefGoogle Scholar
  444. 444.
    K. Krzysztof, M. Shaffer, A. Windle, Three-dimensional internal order in multiwall carbon nanotubes grown by chemical vapor deposition. Adv. Mater. 17(6), 760–763 (2005)CrossRefGoogle Scholar
  445. 445.
    N. Grobert, M. Mayne, M. Terrones, J. Sloan, R. E. Dunin-Borkowskif, R. Kamalakaran, T. Seeger, H. Terrones, M. Riihle, D.R.M. Walton, H. W. Kroto, H. L. Hutchisonf. Metal and alloy nanowires: iron and invar inside carbon nanotubes. in: CP591, Electronic Properties of Molecular Nanostructures, ed by H. Kuzmany, et al. (Ed), (American Institute of Physics, College Park, Mariland, USA, 2001), pp. 287–290Google Scholar
  446. 446.
    S.Y. Chen, H.Y. Miao, J.T. Lue, M.S. Ouyang, Fabrication and field emission property studies of multiwall carbon nanotubes. J. Phys. D. Appl. Phys. 37, 273–279 (2004)CrossRefGoogle Scholar
  447. 447.
    E.B. Sansom, D. Rinderknecht, M. Gharib, Controlled partial embedding of carbon nanotubes within flexible transparent layers. Nanotechnology 19, 035302, 6 pp (2008)CrossRefGoogle Scholar
  448. 448.
    H. Kai-Hsuan, T. Shinn-Shyong, K. Wen-Shyong, W. Bingqing, K. Tse-Hao, Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology 19, 295602 (2008)CrossRefGoogle Scholar
  449. 449.
    F. Seichepine, S. Salomon, M. Collet, et al., A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets. Nanotechnology 23(9), 1–7 (2012)CrossRefGoogle Scholar
  450. 450.
    J. Zhang, K. Wang, Q. Xu, et al., Beyond yolk–shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015)CrossRefGoogle Scholar
  451. 451.
    R. Liping, Z. Hangyu, L. Hanlin, L. Jingping, T. Fushan, S. Ying-Kang, Z. Xiaojun, Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. PNAS 106(13), 5105–5110 (2009) http://www.pnas.org/content/106/13/5105.full.pdf+html
  452. 452.
    S. Borhani, S.A.H. Ravandi, S.G. Etemad, Evaluation of surface roughness of polyacrylonitrile nanowebs. Iran. J. Polym Sci. Technol. (Persian Edition) 21(1), 61–69 (2008)Google Scholar
  453. 453.
    G. Chen, H.J.C. Gommeren, L.M. Knorr, Liquid filtration media. U.S. Pat. Appl. US 2009026137, Publ. 2009, 8 pp. Cont.-in-part of U.S. Ser. No. 74,164. A1 20090129 US 2008-284027Google Scholar
  454. 454.
    C.-H. Chi, H.S. Lim, Pleated nanoweb structures for filters. Appl. Publ. 2009, 8 pp. US 2009064648 A1 20090312 US 2007-899803Google Scholar
  455. 455.
    D. C. Jones, W. H. Stone Fuel filter. U.S. Pat. Appl. Publ. 2008, 5 pp. US 2008105626 A1 20080508 US 2006-591733Google Scholar
  456. 456.
    S. Torres-Peiro, A. Diez, J.L. Cruz, M.V. Andres, C.M.B. Cordeiro, C.J. de Matos Fabrication and postprocessing of Ge-doped nanoweb fibers. in SAIP Conference Proceedings, 2008, 1055 (1st Workshop on Specialty Optical Fibers and Their Applications, 2008), 50–53Google Scholar
  457. 457.
    K.W. Hutchenson, M.A. Page, A. Raghavanpillai, S. Reinartz, C.M. Stancik, J.J. Van Gorp, Method for production of nanoweb composite material containing short perfluorinated alkyl chains. US Patent Appl. Publ. 2009, 11 pp. US 2009047498 A1 20090219 US 2007-837647Google Scholar
  458. 458.
    K.A. Darling, C.L. Reynolds Jr., D.N. Leonard, G. Duscher, R.O. Scattergood, C.C. Koch, Self-assembled three-dimensional Cu-Ge nanoweb composite. Nanotechnology 19(13), 135603/1–135603/6 (2008)CrossRefGoogle Scholar
  459. 459.
    B.W. Ahn, Y.S. Chi, T.J. Kang, Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J. Appl. Polym. Sci. 110(6), 4055–4063 (2008)CrossRefGoogle Scholar
  460. 460.
    D. Kimmer, P. Slobodian, D. Petras, M. Zatloukal, R. Olejnik, P. Saha, Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J. Appl. Polym. Sci. 111(6), 2711–2714 (2009)CrossRefGoogle Scholar
  461. 461.
    T.-G. Kim, D. Ragupathy, A.I. Gopalan, K.-P. Lee, Electrospun carbon nanotubes-gold nanoparticles embedded nanowebs: prosperous multi-functional nanomaterials. Nanotechnology 21(13), 134021 (2010)CrossRefGoogle Scholar
  462. 462.
    S.-G. Kang, Y.-H. Bae, S.-L. Quan, I.-J. Chin, Electrospun PMMA/polyhedral oligomeric silsesquioxane (POSS) nanohybrid nanofibers. PMSE Prepr. 101, 1293–1294 (2009)Google Scholar
  463. 463.
    N. Yahya, B.H. Guan, L.K. Pah, Catalytic effect of formation of a web-like carbon nanostructures. Solid State Sci. Technol. 15(1), 22–29 (2007)Google Scholar
  464. 464.
    C.K. Chung, S.T. Hung, C.W. Lai, Effect of microstructure on the mechanical properties of carbon nanofilms deposited on the Si(100) at high temperature under ultra high vacuum. Surf. Coat. Technol. 204(6–7), 1066–1070 (2009)CrossRefGoogle Scholar
  465. 465.
    M. Endo, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Applications of carbon nanotubes in the twenty-first century. Phil. Trans. R. Soc. Lond. A 362, 2223–2238 (2004)CrossRefGoogle Scholar
  466. 466.
    H.E. Cho, S.J. Seo, M.-S. Khil, H. Kim, Preparation of carbon nanoweb from cellulose nanowhisker. Fibers Polym. 168(2), 271–275 (2015)CrossRefGoogle Scholar
  467. 467.
    H.-D. Lim, Y. SooYun, Y. Ko, et al., Three-dimensionally branched carbon nanowebs as air-cathode for redox-mediated Li-O2 batteries. Carbon 118, 114–119 (2017)CrossRefGoogle Scholar
  468. 468.
    L. Li, A. Manthiram, O- and N-doped carbon nanowebs as metal-free catalysts for hybrid Li-air batteries. Adv. Energy Mater. 4(10), 1301795 (2014)CrossRefGoogle Scholar
  469. 469.
    Z. Yang, Q. Meng, Z. Guo, et al., Highly reversible lithium storage in uniform Li4Ti5O12/carbon hybrid nanowebs as anode material for lithium-ion batteries. Energy 55, 925–932 (2013)CrossRefGoogle Scholar
  470. 470.
    Q. Huang, L. Liu, D. Wang, et al., One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J. Mater. Chem. A 4, 6802–6808 (2016)CrossRefGoogle Scholar
  471. 471.
    S. Liu, L. Li, H.S. Ahn, A. Manthiram, Delineating the roles of Co3O4 and N-doped carbon nanoweb (CNW) in bifunctional Co3O4/CNW catalysts for oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 3, 11615–11623 (2015)CrossRefGoogle Scholar
  472. 472.
    G. Benedek, H. Vahedi-Tafreshi, E. Barborini, P. Piseri, P. Milani, C. Ducati, J. Robertson, The structure of negatively curved spongy carbon. Diam. Relat. Mater. 12(3–7), 768–773 (2003)CrossRefGoogle Scholar
  473. 473.
    F.H. Oliveira Carvalho, A. Rodrigues Vaz, S. Moshkalev, R. Valentim Gelamo, Synthesis of carbon nanostructures near room temperature using microwave PECVD. Mater. Res. 18(4), 860–866 (2015)CrossRefGoogle Scholar
  474. 474.
    N.Q. Le, Increasing carbon nanosponge oil absorbency through infusion of boron. AAAS 2015 Annual Meeting, 2015., https://aaas.confex.com/aaas/2015/webprogram/Paper15430.html
  475. 475.
    D.P. Hashim, N.T. Narayanan, J.M. Romo-Herrera, et al., Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep. 2, 363 (2012)CrossRefGoogle Scholar
  476. 476.
    F.C.C. Moura, R.M. Lago, Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Appl. Catal. B Environ. 90(3–4), 436–440 (2009)CrossRefGoogle Scholar
  477. 477.
    W. Zhou, R.P. Tiwari, R. Annamalai, R. Sooryakumar, V. Subramaniam, D. Stroud, Sound propagation in light-modulated carbon nanosponge suspensions. Phys. Rev. B 79, 104204 (2009)CrossRefGoogle Scholar
  478. 478.
    A.V. Rode, E.G. Gamaly, A.G. Christy, J.G. Fitz Gerald, S.T. Hyde, R.G. Elliman, B. Luther-Davies, A.I. Veinger, J. Androulakis, J. Giapintzakis, Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B 70, 054407, 9 pp (2004)CrossRefGoogle Scholar
  479. 479.
    N.K. Sidhu, A.C. Rastogi, Bifacial carbon nanofoam-fibrous PEDOT composite supercapacitor in the 3-electrode configuration for electrical energy storage. Synth. Met. 219, 1–10 (2016)CrossRefGoogle Scholar
  480. 480.
    K. Lee, H. Song, K. Hoon Lee, et al., Nickel nanofoam/different phases of ordered mesoporous carbon composite electrodes for superior capacitive energy storage. ACS Appl. Mater. Interfaces 8(34), 22516–22525 (2016)CrossRefGoogle Scholar
  481. 481.
    R. Della Noce, S. Eugénio, M. Boudard, et al., One-step process to form a nickel-based/carbon nanofoam composite supercapacitor electrode using Na2SO4 as an eco-friendly electrolyte. RSC Adv. 6, 15920–15928 (2016)CrossRefGoogle Scholar
  482. 482.
    P. Ramakrishnan, S. Shanmugam, J. Hyun Kim, Dual heteroatom-doped carbon nanofoam-wrapped iron monosulfide nanoparticles: an efficient cathode catalyst for Li–O2 batteries. ChemSusChem 10(7), 1554–1562 (2017)CrossRefGoogle Scholar
  483. 483.
    C.N. Chervin, M.J. Wattendorf, J.W. Long, N.W. Kucko, D.R. Rolison, Carbon nanofoam-based cathodes for Li–O2 batteries: correlation of pore–solid architecture and electrochemical performance. J. Electrochem. Soc. 160(9), A1510–A1516 (2013)CrossRefGoogle Scholar
  484. 484.
    N. Frese, S. Taylor Mitchell, C. Neumann, A. Bowers, A. Gölzhäuser, K. Sattler, Fundamental properties of high-quality carbon nanofoam: from low to high density. Beilstein J. Nanotechnol. 7, 2065–2073 (2016)CrossRefGoogle Scholar
  485. 485.
    Z. Zhu, D. Tomanek, Formation and stability of cellular carbon foam structures: an ab initio study. Phys. Rev. Lett. 109, 135501 (2012)CrossRefGoogle Scholar
  486. 486.
    Y.-L. Li, W. Luo, X.-J. Chen, Z. Zeng, H.-Q. Lin, R. Ahuja, Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6. Sci. Rep. 3, 3331 (2013)CrossRefGoogle Scholar
  487. 487.
    E.G. Gamaly, A.V. Rode, Nanostructures created by lasers, in Encyclopedia of Nanoscience and Nanotechnology, ed. by H. S. Nalwa (Ed), vol. 7, (American Scientific Publishers, Valencia, California, 2004), pp. 783–809Google Scholar
  488. 488.
    A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., ‘Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRefGoogle Scholar
  489. 489.
    A.V. Rode, E.G. Gamaly, B. Luther-Davies, Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation. Appl. Phys. A Mater. Sci. Process. 70, 135–144 (2000)CrossRefGoogle Scholar
  490. 490.
    S. Li, J. Guangbin, L. Liya, Magnetic carbon nanofoams. J. Nanosci. Nanotechnol. 9, 1133–1136 (2009)CrossRefGoogle Scholar
  491. 491.
    D.W.M. Lau, D.G. McCulloch, N.A. Marks, N.R. Madsen, A.V. Rode, High-temperature formation of concentric fullerene-like structures within foam-like carbon: experiment and molecular dynamics simulation. Phys. Rev. B 75, 233408 (2007)CrossRefGoogle Scholar
  492. 492.
    Z. Liu, S.-K. Joung, T. Okazaki, K. Suenaga, Y. Hagiwara, T. Ohsuna, K. Kuroda, S. Iijima, Self-assembled double ladder structure formed inside carbon nanotubes by encapsulation of H8Si8O12. ACS Nano 3(5), 1160–1166 (2009)CrossRefGoogle Scholar
  493. 493.
    S.P. Sharma, S.C. Lakkad, Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique. Surf. Coat. Technol. 203(10–11), 1329–1335 (2009)CrossRefGoogle Scholar
  494. 494.
    C. Ronning, D. Schwen, One dimensional material from semiconductors. Nanowires, nanosaws, nanospirals. Physik in Unserer Zeit 37(1), 34–40 (2006)CrossRefGoogle Scholar
  495. 495.
    V.Y. Prinz, Three-dimensional self-shaping nanostructures based on free stressed heterofilms. Russ. Phys. J. (Translation of Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika) 46(6), 568–576 (2003)Google Scholar
  496. 496.
    P.G. Mezey, Computational quantum chemistry design of nanospirals and nanoneedles. Lecture Series on Computer and Computational Sciences 6(Trends and Perspectives in Modern Computational Science), 222–230 (2006)Google Scholar
  497. 497.
    S. Vaudreuil, M. Bousmina, Stretchable carbon nanosprings production by a catalytic growth process. J. Nanosci. Nanotechnol. 9(8), 4880–4885 (2009)CrossRefGoogle Scholar
  498. 498.
    L. Liu, J. Zhao, Toroidal and coiled carbon nanotubes, in Syntheses and Applications of Carbon Nanotubes and Their Composites, (InTech, London, UK, 2013), pp. 257–281Google Scholar
  499. 499.
    A. Zettl, C. John, Sharpened nanotubes, nanobearings, and nanosprings, in CP544, Electronic Properties of Novel Materials—Molecular Nanostructures, ed. by H. Kuzmany et al. (Eds), (American Institute of Physics, College Park, Maryland, USA, 2000)Google Scholar
  500. 500.
    K. Mukhopadhyay, D. Porwal, K.U.B. Rao, Carbon micro/nano spring structures in the absence of sulphurous promoter by CCVD method. J. Nanosci. Nanotechnol. 7(6), 1851–1854 (2007)CrossRefGoogle Scholar
  501. 501.
    N. Tang, W. Kuo, C. Jeng, L. Wang, K. Lin, Y. Du, Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 4(2), 781–788 (2010)CrossRefGoogle Scholar
  502. 502.
    K. Nakamatsu, J. Igaki, M. Nagase, T. Ichihashi, S. Matsui, Mechanical characteristics of tungsten-containing carbon nanosprings grown by FIB-CVD. Microelectron. Eng. 83(4–9), 808–810 (2006)CrossRefGoogle Scholar
  503. 503.
    K. Nakamatsu, T. Ichihashi, K. Kanda, Y. Haruyama, T. Kaito, S. Matsui, Nanostructure analysis of nanosprings fabricated by focused-ion-beam chemical vapor deposition. Jpn. J. Appl. Phys. 48(10), 105001/1–105001/4 (2009)CrossRefGoogle Scholar
  504. 504.
    X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299–1304 (2003)CrossRefGoogle Scholar
  505. 505.
    M. Mahdi Zaeria, S. Ziaei-Rad, Elastic behavior of carbon nanocoils: a molecular dynamics study. AIP Adv. 5, 117114 (2015)CrossRefGoogle Scholar
  506. 506.
    M. Neek-Amal, J. Beheshtian, F. Shayeganfar, S.K. Singh, J.H. Los, F.M. Peeters, Spiral graphone and one-sided fluorographene nanoribbons. Phys. Rev. B 87, 075448 (2013)CrossRefGoogle Scholar
  507. 507.
    J. Liu, Y.-L. Lu, M. Tian, F. Li, J. Shen, Y. Gao, L. Zhang, The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: simulation and experiment. Adv. Funct. Mater. 23(9), 1156–1163 (2013)CrossRefGoogle Scholar
  508. 508.
    J. Zhan. Editor(s): Voler, Nicolas H., Carbon nanotubes as use of nanothermometer. Bando, Yoshio. Materials Integration 17(6), 34–40 (2004)Google Scholar
  509. 509.
    Y. Bando, World smallest nanothermometer using carbon nanotube. Kagaku 59(6), 20–24 (2004)Google Scholar
  510. 510.
    Y. Bando, Oxide-nanotubes as use of nanothermometer. Seramikkusu 41(4), 262–266 (2006)Google Scholar
  511. 511.
    Y. Bando, Nanothermometer using oxide nanotubes. Materials Integration 18(1), 42–47 (2004). Volume Date 2005Google Scholar
  512. 512.
    Y. Bando, Study of nanomaterials by using state-of-the-art microscopy. Kagaku to Kogyo 57(6), 595–600 (2004)Google Scholar
  513. 513.
    G. Yihua, B. Yoshio, Carbon nanothermometer containing gallium. Nature 415(7), 599–600 (2002)Google Scholar
  514. 514.
    A.M. Popova, Y.E. Lozovik, E. Bichoutskaia, G.S. Ivanchenko, N.G. Lebedev, E.K. Krivorotov, An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls. Phys. Solid State 51(6), 1306–1314 (2009)CrossRefGoogle Scholar
  515. 515.
    R. Ansari, M. Daliri, M. Hosseinzadeh, On the van der Waals interaction of carbon nanotubes as electromechanical nanothermometers. Acta Mech. Sinica 29(4), 622–632 (2013)CrossRefGoogle Scholar
  516. 516.
    Z. Liu, Y. Bando, J. Hu, K. Ratinac, S.P. Ringer, A novel method for practical temperature measurement with carbon nanotube nanothermometers. Nanotechnology 17(15), 3681–3684 (2006)CrossRefGoogle Scholar
  517. 517.
    J. Zhan, Y. Bando, J. Hu, D. Golberg, Nanothermometers: bulk synthesis and calibration, in Abstracts of Papers, 232nd ACS National Meeting, San Francisco, 10–14 Sept 2006, INOR-488Google Scholar
  518. 518.
    Y. Gao, Y. Bando, D. Golberg, Melting and expansion behavior of indium in carbon nanotubes. Appl. Phys. Lett. 81(22), 4133–4135 (2002)CrossRefGoogle Scholar
  519. 519.
    A.M. Popov, Y.E. Lozovik, E. Bichoutskaia, G.S. Ivanchenko, N.G. Lebedev, E.K. Krivorotov, An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls. Phys. Solid State 51(6), 1306–1314 (2009)CrossRefGoogle Scholar
  520. 520.
    A.M. Popov, Y.E. Lozovik, E. Bichoutskaia, G.S. Ivanchenko, N.G. Lebedev, E.K. Krivorotov, Electromechanical nanothermometer based on carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct. 16(5–6), 352–356 (2008)CrossRefGoogle Scholar
  521. 521.
    A. Vyalikh, R. Klingeler, S. Hampel, D. Haase, M. Ritschel, A. Leonhardt, E. Borowiak-Palen, M. Rümmeli, A. Bachmatiuk, R.J. Kalenczuk, H.-J. Grafe, B. Büchner, A nanoscaled contactless thermometer for biological systems. Phys. Status Solidi B 244(11), 4092–4096 (2007)CrossRefGoogle Scholar
  522. 522.
    C. Wang, K. Jiang, Q. Wu, J. Wu, C. Zhang, Green synthesis of red-emitting carbon nanodots as a novel “turn-on” nanothermometer in living cells. Chem. Eur. J. 22(41), 14475–14479 (2016)CrossRefGoogle Scholar
  523. 523.
    X. Liu, X. Tang, Y. Hou, Q. Wu, G. Zhang, Fluorescent nanothermometers based on mixed shell carbon nanodots. RSC Adv. 5, 81713–81722 (2015)CrossRefGoogle Scholar
  524. 524.
    K. Jiang, J. Wu, Q. Wu, X. Wang, C. Wang, Y. Li, Stable fluorescence of green-emitting carbon nanodots as a potential nanothermometer in biological media. Part. Part. Syst. Charact. 4(2), 1600197 (2017)CrossRefGoogle Scholar
  525. 525.
    Y. Yang, W. Kong, H. Li, et al., Fluorescent N-doped carbon dots as in vitro and in vivo nanothermometer. ACS Appl. Mater. Interfaces 7(49), 27324–27330 (2015)CrossRefGoogle Scholar
  526. 526.
    Y. Nakayama, Nanomachine “nanotweezers”. Kagaku to Kogyo 56(6), 663–666 (2003)Google Scholar
  527. 527.
    C. M. Lieber, J. H. Hafner, C. Cheung Li, P. Kim, Direct growth of carbon nanotubes, and their use in nanotweezers, 2002, 46 pp. WO 2002026624Google Scholar
  528. 528.
    J. Chang, B.-K. Min, J. Kim, S.-J. Lee, L. Lin, Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 18(6) (2009). 065017/1-065017/7CrossRefGoogle Scholar
  529. 529.
    J. Lee, S. Kim, Manufacture of a nanotweezer using a length controlled CNT arm. Sensors Actuators A Phys. A120(1), 193–198 (2005)CrossRefGoogle Scholar
  530. 530.
    G. Liu, Y. Miyake, N. Komatsu, Nanocalipers as novel molecular scaffolds for carbon nanotubes. Org. Chem. Front. 4, 911–919 (2017)CrossRefGoogle Scholar
  531. 531.
    J. M. Tour, NanoCars, in Abstracts, 65th Southwest Regional Meeting of the American Chemical Society, El Paso, 4–7 Nov 2009, SWRM-130Google Scholar
  532. 532.
    T. Sasaki, A.J. Osgood, L.B. Alemany, K.F. Kelly, J.M. Tour, Synthesis of a nanocar with an angled chassis. Toward circling movement. Org. Lett. 10(2), 229–232 (2008)CrossRefGoogle Scholar
  533. 533.
    T. Sasaki, J.M. Tour, Synthesis of a dipolar nanocar. Tetrahedron Lett. 48(33), 5821–5824 (2007)CrossRefGoogle Scholar
  534. 534.
    A.V. Akimov, A.V. Nemukhin, A.A. Moskovsky, A.B. Kolomeisky, J.M. Tour, Molecular dynamics of surface-moving thermally driven nanocars. J. Chem. Theory Comput. 4(4), 652–656 (2008)CrossRefGoogle Scholar
  535. 535.
    T. Sasaki, J.M. Guerrero, J.M. Tour, The assembly line: self-assembling nanocars. Tetrahedron 64(36), 8522–8529 (2008)CrossRefGoogle Scholar
  536. 536.
    S. Khatua, J.M. Guerrero, K. Claytor, G. Vives, A.B. Kolomeisky, J.M. Tour, S. Link, Micrometer-scale translation and monitoring of individual nanocars on glass. ACS Nano 3(2), 351–356 (2009)CrossRefGoogle Scholar
  537. 537.
    G.J. Simpson, V. García-López, P. Petermeier, L. Grill, J.M. Tour, How to build and race a fast nanocar. Nat. Nanotechnol. 12, 604–606 (2017)CrossRefGoogle Scholar
  538. 538.
    G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 42(3), 473–487 (2009)CrossRefGoogle Scholar
  539. 539.
    G. Vives, J. M. Tour, Synthesis of a nanocar with organometallic wheels, in Abstracts of Papers, 238th ACS National Meeting, Washington, DC, 16–20 Aug 2009, INOR-346Google Scholar
  540. 540.
    G. Vives, J.M. Tour, Synthesis of a nanocar with organometallic wheels. Tetrahedron Lett. 50(13), 1427–1430 (2009)CrossRefGoogle Scholar
  541. 541.
    J.-F. Morin, Y. Shirai, J.M. Tour, En route to a motorized nanocar. Org. Lett. 8(8), 1713–1716 (2006)CrossRefGoogle Scholar
  542. 542.
    Y. Shirai, A.J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, Y.-H. Chiu, L.B. Alemany, T. Sasaki, J.-F. Morin, J.M. Guerrero, K.F. Kelly, J.M. Tour, Surface-rolling molecules. J. Am. Chem. Soc. 128(14), 4854–4864 (2006)CrossRefGoogle Scholar
  543. 543.
    Y. Shirai, A.J. Osgood, Y. Zhao, K.F. Kelly, J.M. Tour, Directional control in thermally driven single-molecule nanocars. Nano Lett. 5(11), 2330–2334 (2005)CrossRefGoogle Scholar
  544. 544.
    Z.L. Wang, P. Poncharal, W.A. de Heer, Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solids 61, 1025–1030 (2000)CrossRefGoogle Scholar
  545. 545.
    A. Mirmohseni, M. Shojaei, M.A.H. Feizi, F.F. Azhar, M. Rastgouye-Houjaghan, Application of quartz crystal nanobalance and principal component analysis for detection and determination of nickel in solution. J. Environ. Sci. Health, Part A: Tox. Hazard. Subst. Environ. Eng. 45(9), 1119–1125 (2010)CrossRefGoogle Scholar
  546. 546.
    O.A. Williams, V. Mortet, M. Daenen, K. Haenen, The diamond nano-balance. J. Nanosci. Nanotechnol. 9(6), 3483–3486 (2009)CrossRefGoogle Scholar
  547. 547.
    Y. Huang, X. Bai, Y. Zhang, In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. J. Phys. Condens. Matter 18(15), L179–L184 (2006)CrossRefGoogle Scholar
  548. 548.
    J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Graphene nanomesh. Nat. Nanotechnol. 5(3), 190–194 (2010)CrossRefGoogle Scholar
  549. 549.
    B. Jingwei, Z. Xing, J. Shan, H. Yu, D. Xiangfeng, Graphene nanomesh. Nat. Nanotechnol. 5(3), 190–194 (2010)CrossRefGoogle Scholar
  550. 550.
    X. Liang, Y.-S. Jung, S. Wu, A. Ismach, D.L. Olynick, S. Cabrini, J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10(7), 2454–2460 (2010)CrossRefGoogle Scholar
  551. 551.
    O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7), 4174–4180 (2010)CrossRefGoogle Scholar
  552. 552.
    H.L. Zhang, W. Chen, H. Huang, L. Chen, A.T.S. Wee, Preferential trapping of C60 in nanomesh voids. J. Am. Chem. Soc. 130, 2720–2721 (2008)CrossRefGoogle Scholar
  553. 553.
    H. Wang, L. Zhi, K. Liu, et al., Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Adv. Funct. Mater. 25(34), 5420–5427 (2015)CrossRefGoogle Scholar
  554. 554.
    D.-P. Yang, X. Wang, X. Guo, et al., UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies. J. Phys. Chem. C 118(1), 725–731 (2014)CrossRefGoogle Scholar
  555. 555.
    H.-H. Byeon, W. Chul Lee, W. Kim, et al., Bio-fabrication of nanomesh channels of single-walled carbon nanotubes for locally gated field-effect transistors. Nanotechnology 28, 025304 (2017)CrossRefGoogle Scholar
  556. 556.
    X.-L. Su, M.-Y. Cheng, L. Fu, et al., Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins. J. Power Sources 362, 27–38 (2017)CrossRefGoogle Scholar
  557. 557.
    S.-J. Choi, P. Bennett, D. Lee, J. Bokor, Highly uniform carbon nanotube nanomesh network transistor. Nano Res. (8), 1320 (2015)CrossRefGoogle Scholar
  558. 558.
    X.F. Yang, H.L. Wang, Y.S. Chen, et al., Giant spin thermoelectric effects in all-carbon nanojunctions. Phys. Chem. Chem. Phys. 17, 22815–22822 (2015)CrossRefGoogle Scholar
  559. 559.
    Y. Liao, Y. Xie, K. Pan, et al., Fe3W3C/WC/graphitic carbon ternary nanojunction hybrids for dye-sensitized solar cells. ChemSusChem 8(4), 726–733 (2015)CrossRefGoogle Scholar
  560. 560.
    I.A. Pshenichnyuk, P.B. Coto, S. Leitherer, M. Thoss, Charge transport in pentacene-graphene nanojunctions. J. Phys. Chem. Lett. 4(5), 809–814 (2013)CrossRefGoogle Scholar
  561. 561.
    M.M. Hassan, A.A. El-Barbary, M.A. Kamel, K.M. Eid, H.O. Taha, Mono-vacancy and B-doped defects in carbon heterojunction nanodevices. Graphene 4, 84–90 (2015)CrossRefGoogle Scholar
  562. 562.
    D. Szczesniak, A. Khater, Z. Bak, R. Szczesniak, M. Abou Ghantous, Quantum conductance of silicon-doped carbon wire nanojunctions. Nanoscale Res. Lett. 7, 616 (2012)CrossRefGoogle Scholar
  563. 563.
    A.G. Krivenko, N.S. Komarova, Electrochemistry of nanostructured carbon. Russ. Chem. Rev. 77(11), 927–943 (2008)CrossRefGoogle Scholar
  564. 564.
    A. Barhoum, P. Samyn, T. Öhlundd, A. Dufresnee, Review of recent research on flexible multifunctional nanopapers. Nanoscale 9, 15181–15205 (2017)CrossRefGoogle Scholar
  565. 565.
    Y. Zhao, E.D. Cabrera, M.C. Jose, L.J. Lee, Chapter 4 - Carbon nanopaper: a platform to high-performance multifunctional composites, in Nanopapers From Nanochemistry and Nanomanufacturing to Advanced Applications, Micro and Nano Technologies, (Elsevier Science, New York, 2018), pp. 87–120CrossRefGoogle Scholar
  566. 566.
    L. Hu, N. Liu, M. Eskilsson, G. Zheng, J. McDonough, L. Wågberg, Y. Cui, Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2, 138–145 (2013)CrossRefGoogle Scholar
  567. 567.
    D.P. Wong, R. Suriyaprabha, R. Yuvakumar, V. Rajendran, Y.-T. Chen, B.-J. Hwang, L.-C. Chen, K.-H. Chen, Binder-free rice husk-based silicon–graphene composite as energy efficient Li-ion battery anodes. J. Mater. Chem. A 2, 13437–13441 (2014)CrossRefGoogle Scholar
  568. 568.
    J. Zhuge, J. Gou, R.-H. Chen, et al., Fire retardant evaluation of carbon nanofiber/graphite nanoplatelets nanopaper-based coating under different heat fluxes. Compos. Part B 43, 3293–3305 (2012)CrossRefGoogle Scholar
  569. 569.
    H. Lu, Y. Liu, J. Leng, Carbon nanopaper enabled shape memory polymer composites for electrical actuation and multifunctionalization. Marcomol. Mater. Eng. 297(12), 1138–1147 (2012)Google Scholar
  570. 570.
    H. Lu, Y. Liu, J. Gou, J. Leng, S. Du, Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater. Struct. 19(7), 075021/1–075021/7 (2010)CrossRefGoogle Scholar
  571. 571.
    H. Lu, Y. Liu, J. Gou, J. Leng, S. Du, Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Appl. Phys. Lett. 96(8), 084102/1–084102/3 (2010)CrossRefGoogle Scholar
  572. 572.
    H. Lu, P. Bai, W. Yin, F. Liang, J. Gou, Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotechnol. Lett. 5(7), 732–736 (2013)CrossRefGoogle Scholar
  573. 573.
    H. Lu, F. Liang, Y. Yao, J. Gou, D. Hui, Self-assembled multi-layered carbon nanofiber nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite. Compos. Part B 59, 191–195 (2014)CrossRefGoogle Scholar
  574. 574.
    H. Lu, W.M. Huang, J. Leng, Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Compos. Part B 62, 1–4 (2014)CrossRefGoogle Scholar
  575. 575.
    X. Zhao, J. Gou, G.G. Song, J. Ou, Strain monitoring in glass fiber reinforced composites embedded with carbon nanopaper sheet using Fiber Bragg Grating (FBG) sensors. Compos. Part B Eng. 40B(2), 134–140 (2009)CrossRefGoogle Scholar
  576. 576.
    M.R. Bromberg, A. Patlolla, R. Segal, Y. Feldman, Q. Wang, Z. Iqbal, A.I. Frenkel, Synthesis and characterization of platinum nanoparticles on single-walled carbon nanotube “nanopaper” support. J. Phys. Conf. Ser. 190, 012155 (2009)CrossRefGoogle Scholar
  577. 577.
    J. Gou, R. Blanco, Z. Zhao, A. Khan, A. Appalla, Synthesis of nickel-coated carbon nanopaper sheets by pulse laser deposition. Materials Research Society Symposium Proceedings, 2007, 1006E (Transport Behavior in Heterogeneous Polymeric Materials and Composites), No pp. given, Paper #: 1006-R01-09Google Scholar
  578. 578.
    M. Das, C. Bittencourt, J.-J. Pireaux, S.A. Shivashankar, Metallic Li in carbonaceous nanotubes grown by metalorganic chemical vapor deposition from a metalorganic precursor. Appl. Organomet. Chem. 22(11), 647–658 (2008)CrossRefGoogle Scholar
  579. 579.
    D.A. Lowy, A. Patrut, Nanobatteries: decreasing size power sources for growing technologies. Recent Pat. Nanotechnol. 2(3), 208–219 (2008)CrossRefGoogle Scholar
  580. 580.
    Fast-charging nano batteries. Am. Ceram. Soc. Bull. 85(10), 21–22 (2006) https://bulletin-archive.ceramics.org/uctv2f/
  581. 581.
    J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004)CrossRefGoogle Scholar
  582. 582.
    P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B 213, 12–40 (2016)CrossRefGoogle Scholar
  583. 583.
    B. Liu, X. Wu, S. Wang, et al., Flexible carbon nanotube modified separator for high-performance lithium-sulfur batteries. Nano 7, 196 (2017)Google Scholar
  584. 584.
    W.-J. Yu, C. Liu, L. Zhang, et al., Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 3, 1600113 (2016)CrossRefGoogle Scholar
  585. 585.
    W.-S. Kim, J. Choi, S.-H. Hong, Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 9(7), 2174–2181 (2016)CrossRefGoogle Scholar
  586. 586.
    C. Shen, J. Xie, M. Zhang, et al., Carbon nanotube (CNT) foams as sulfur hosts for high performance lithium sulfur battery. ECS Trans. 77(11), 457–465 (2017)CrossRefGoogle Scholar
  587. 587.
    A.-R.O. Raji, R. Villegas Salvatierra, N. Dong Kim, et al., Lithium batteries with nearly maximum metal storage. ACS Nano 11(6), 6362–6369 (2017)CrossRefGoogle Scholar
  588. 588.
  589. 589.
    A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sensors Actuators B Chem. B146(2), 502–506 (2010)CrossRefGoogle Scholar
  590. 590.
    F. Korel, M.O. Balaban, Electronic nose technology in food analysis, in Handbook of Food Analysis Instruments, ed. by S. Otles (Ed), (CRC Press, Boca Raton, FL, USA, 2009), pp. 365–378Google Scholar
  591. 591.
    H. Nanto, Electronic nose (e-NOSE) system. Materials Integration 21(5, 6), 99–104 (2008)Google Scholar
  592. 592.
    A.D. Wilson, M. Baietto, Applications and advances in electronic-nose technologies. Sensors 9(7), 5099–5148 (2009)CrossRefGoogle Scholar
  593. 593.
    C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont, T. Kerdcharoen, Portable electronic nose based on carbon nanotube-SnO2 gas sensors and its application for detection of methanol contamination in whiskeys. Sensors Actuators B Chem. B147(2), 392–399 (2010)CrossRefGoogle Scholar
  594. 594.
    S. Kaur, A. Kumar, J.K. Rajput, P. Arora, H. Singh, SnO2—glycine functionalized carbon nanotubes based electronic nose for detection of explosive materials. Sens. Lett. 14(7), 733–739 (2016)CrossRefGoogle Scholar
  595. 595.
    P. Lorwongtragool, E. Sowade, N. Watthanawisuth, R.R. Baumann, T. Kerdcharoen, A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 14, 19700–19712 (2014)CrossRefGoogle Scholar
  596. 596.
    B.D. Lampson, A. Khalilian, J.K. Greene, Y.J. Han, D.C. Degenhardt, Development of a portable electronic nose for detection of cotton damaged by Nezara viridula (Hemiptera: Pentatomidae). J. Insects 2014, 297219, 8 pp (2014)CrossRefGoogle Scholar
  597. 597.
    M.L. Rodríguez-Méndez, J.A. De Saja, R. González-Antón, et al., Electronic noses and tongues in wine industry. Front. Bioeng. Biotechnol. 4, 81 (2016)CrossRefGoogle Scholar
  598. 598.
    A.M. Popov, E. Bichoutskaia, Y.E. Lozovik, A.S. Kulish, Nanoelectromechanical systems based on multi-walled nanotubes: nanothermometer, nanorelay, and nanoactuator. Phys. Status Solidi A 204(6), 1911–1917 (2007)CrossRefGoogle Scholar
  599. 599.
    J. Li, X. Wang, L. Zhao, X. Gao, Y. Zhao, R. Zhouc, Rotation motion of designed nano-turbine. Sci. Rep. 4, 5846 (2014)CrossRefGoogle Scholar
  600. 600.
    J. Basu, C. Roy Chaudhuri, Graphene nanogrids FET immunosensor: signal to noise ratio enhancement. Sensors 16, 1481 (2016)CrossRefGoogle Scholar
  601. 601.
    O.E. Glukhova, I.N. Salii, V.P. Meshchanov, Nano-autoclave on the basis of carbon nanopeapod. Nano- i Mikrosistemnaya Tekhnika 10, 47–52 (2007)Google Scholar
  602. 602.
    A. Mayoral, H. Barron, R. Estrada-Salas, A. Vazquez-Duran, M. Jose-Yacaman, Nanoparticle stability from the nano to the meso interval. Nanoscale 2, 335–342 (2010)CrossRefGoogle Scholar
  603. 603.
    W. Wang, T. Christensen, A.-P. Jauho, K.S. Thygesen, M. Wubs, N.A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles. Sci. Rep. (2015). https://doi.org/10.1038/srep09535
  604. 604.
    H.P. Heiskanen, M. Manninen, J. Akola, Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level. 2008, arXiv:0809.4162v1. https://arxiv.org/pdf/0809.4162CrossRefGoogle Scholar
  605. 605.
    D. Gorakh Babar, B. Pakhira, S. Sarkar, DNA–carbon nano onion aggregate: triangle, hexagon, six-petal flower to dead-end network. Appl. Nanosci. 7(6), 291–297 (2017)CrossRefGoogle Scholar
  606. 606.
    V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 80(3), 476–478 (2002)CrossRefGoogle Scholar
  607. 607.
    M. Hu, X. Dong, Y. Pan, et al., A metallic carbon consisting of helical carbon triangle chains. J. Phys. Condens. Matter 26, 235402, 6 pp (2014)CrossRefGoogle Scholar
  608. 608.
    Y. Masuda, H. Yoshida, S. Takeda, H. Kohno, In situ transmission electron microscopy of individual carbon nanotetrahedron/nanoribbon structures in Joule heating. Appl. Phys. Lett. 105, 083107 (2015)CrossRefGoogle Scholar
  609. 609.
    H. Kohno, Y. Masuda, In situ transmission electron microscopy of individual carbon nanotetrahedron/ribbon structures in bending. Appl. Phys. Lett. 106, 193103 (2015)CrossRefGoogle Scholar
  610. 610.
    H. Kohno, T. Hasegawa, Chains of carbon nanotetrahedra/nanoribbons. Sci. Rep. 5, 8430 (2015)CrossRefGoogle Scholar
  611. 611.
    T. Hasegawa, H. Kohno, Splitting and joining in carbon nanotube/nanoribbon/nanotetrahedron growth. Phys. Chem. Chem. Phys. 17, 3009–3013 (2015)CrossRefGoogle Scholar
  612. 612.
    S. Kumar Sonkar, M. Saxena, M. Saha, S. Sarkar, Carbon nanocubes and nanobricks from pyrolysis of rice. J. Nanosci. Nanotechnol. 10, 4064–4067 (2010)CrossRefGoogle Scholar
  613. 613.
    B. Sun, S. Chen, H. Liu, G. Wang, Mesoporous carbon nanocube architecture for high-performance lithium–oxygen batteries. Adv. Funct. Mater. 25, 4436–4444 (2015)CrossRefGoogle Scholar
  614. 614.
    G. Oza, M. Ravichandran, V.-I. Merupo, et al., Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci. Rep. 6, 21286 (2016)CrossRefGoogle Scholar
  615. 615.
    Y. Liang, J. Wei, X. Zhang, et al., Synthesis of nitrogen-doped porous carbon nanocubes as a catalyst support for methanol oxidation. ChemCatChem 8(11), 1901–1904 (2016)CrossRefGoogle Scholar
  616. 616.
    F. Gao, F. Zhou, Y. Yao, et al., Ordered assembly of platinum nanoparticles on carbon nanocubes and their application in the non-enzymatic sensing of glucose. J. Electroanal. Chem. 803, 165–172 (2017)CrossRefGoogle Scholar
  617. 617.
    X.-W. Liu, Z.-J. Yao, Y.-F. Wang, X.-W. Wei, Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties. Colloids Surf. B. Biointerfaces 81(2), 508–512 (2010)CrossRefGoogle Scholar
  618. 618.
    J. Xi, Y. Xia, Y. Xu, J. Xiao, S. Wang, (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal–organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem. Commun. 51, 10479–10482 (2015)CrossRefGoogle Scholar
  619. 619.
    W. Chen, X. Zhang, F. Ai, Graphitic carbon nanocubes derived from ZIF-8 for photothermal therapy. Inorg. Chem. 55(12), 5750–5752 (2016)CrossRefGoogle Scholar
  620. 620.
    X. Fang, L. Jiao, S.-H. Yu, H.-L. Jiang, Metal–organic framework-derived FeCo-N-doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media. ChemSusChem 10, 3019–3024 (2017)CrossRefGoogle Scholar
  621. 621.
    S. Chen, B. Sun, X. Xie, et al., Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reservoirs for lithium–sulfur batteries with long cycle life. Nano Energy 16, 268–280 (2015)CrossRefGoogle Scholar
  622. 622.
    H.X. Zhang, P.X. Feng, Synthesis of the vertically aligned carbon hexagonal nanoprism arrays and their application for field emission. Appl. Surf. Sci. 255, 5939–5942 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations