Advertisement

Conventional Carbon Allotropes

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova
Chapter

Abstract

According to much available information, graphite and diamond belong to well-known classic carbon allotropes. In several classifications, natural coal, amorphous carbon, and commercially produced carbon black are added to this non-strict list of conventional carbon forms.

Keywords

Graphite Properties Evolution Intercalation Oxidation Graphite oxide Diamond Synthetic diamonds High pressure Thermal conductivity Amorphous carbon Synthesis Modification Films Transformations 

References

  1. 1.
    H. Lipson, A.R. Stokes, A new structure of carbon. Nature 149(3777), 328 (1942)CrossRefGoogle Scholar
  2. 2.
    A.Q. Baig, M. Imran, W. Khalid, M. Naeem, Molecular description of carbon graphite and crystal cubic carbon structures. Can. J. Chem. 95(6), 674–686 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Delhaes, Graphite and Precursors. CRC Press. 312 pp. 2001Google Scholar
  4. 4.
    C. Barton. Did Graphite in the Chernobyl Reactor Burn? (2011), http://www.theenergycollective.com/charlesbarton/55702/did-graphite-chernobyl-reactor-burn
  5. 5.
  6. 6.
    T. Enoki, M. Suzuki, Graphite Intercalation Compounds and Applications (Oxford University Press, New York, 2003), p. 456Google Scholar
  7. 7.
    R.V. Lapshin, Automatic lateral calibration of tunneling microscope scanners. Rev. Sci. Instrum. 69(9), 3268–3276 (1998)CrossRefGoogle Scholar
  8. 8.
    http://www.galleries.com/Graphite. Accessed 15 Jan 2018
  9. 9.
  10. 10.
  11. 11.
    P.P. Magampa, N. Manyala, W.W. Focke, Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. J. Nucl. Mater. 436(1–3), 76–83 (2013)CrossRefGoogle Scholar
  12. 12.
    G.-S. Wang, X.-J. Zhang, Y.-Z. Wei, et al., Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride. J. Mater. Chem. A 1, 7031–7036 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Wei, S. Hu, R. Zhang, C. Xu, F. Zhang, Q. Liu, Enhanced electrical properties of graphite/ABS composites prepared via supercritical CO2 processing. Polym. Bull. 74, 4279 (2017). https://doi.org/10.1007/s00289-017-1956-8CrossRefGoogle Scholar
  14. 14.
    P.K.A. Ramanujam, Conducting polymer–graphite binary and hybrid composites: Structure, properties, and applications, in Hybrid Polymer Composite Materials: Applications, (Woodhead Publishing (Elsevier), Kidlington, Oxford, UK, 2017)Google Scholar
  15. 15.
    K. Kornaus, A. Gubernat, D. Zientara, P. Rutkowski, L. Stobierski, Mechanical and thermal properties of tungsten carbide – graphite nanoparticles nanocomposites. Pol. J. Chem. Technol. 18(2), 84–88 (2016)CrossRefGoogle Scholar
  16. 16.
    I.M. Karzov, O.N. Shornikova, S.V. Filimonov, A.P. Malakho, V.V. Avdeev, Cu-expanded graphite composite material preparation and thermal properties. Eurasian Chem. Techn. J. 19(3), 273–277 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Hutsch, T. Schubert, T. Weissgaerber, B. Kieback, Graphite metal composites with tailored physical properties. Emerg. Mater. Res. 1(2), 107–114 (2012)CrossRefGoogle Scholar
  18. 18.
    S.J. Turneaure, S.M. Sharma, T.J. Volz, J.M. Winey, Y.M. Gupta, Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3(10), eaao3561 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Alofi, G.P. Srivastava, Evolution of thermal properties from graphene to graphite. Appl. Phys. Lett. 104, 031903 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Dong, Z. Chen, S. Lin, K. Wang, C. Ma, H. Lu, Reactivity-controlled preparation of ultralarge graphene oxide by chemical expansion of graphite. Chem. Mater. 29(2), 564–572 (2017)CrossRefGoogle Scholar
  21. 21.
    K.C. Knirsch, J.M. Englert, C. Dotzer, F. Hauke, A. Hirsch, Screening of the chemical reactivity of three different graphite sources using the formation of reductively alkylated graphene as a model reaction. Chem. Commun. 49, 10811–10813 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Mulet-Gas, L. Abella, M.R. Cerón, et al., Transformation of doped graphite into cluster-encapsulated fullerene cages. Nat. Commun. 8, 1222 (2017)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    K. Lee, Fundamental graphite techniques (Lydia Inglett Publishing, 2010), Hilton Head Island, SC, USA, p. 176Google Scholar
  25. 25.
  26. 26.
  27. 27.
    E.I. Zhmurikov, I.A. Bubnenkov, V.V. Dremov, S.I. Samarin, A.S. Pokrovsky, D.V. Harkov. Graphite in science and nuclear technique. 2013, arXiv:1307.1869 [cond-mat.mtrl-sci]Google Scholar
  28. 28.
    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'Homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)CrossRefGoogle Scholar
  29. 29.
    D.W. Lee, V.L. De Los Santos, J.W. Seo, L. Leon Felix, D.A. Bustamante, J.M. Cole, C.H.W. Barne, The structure of graphite oxide: investigation of its surface chemical groups. J. Phys. Chem. B 114(17), 5723–5728 (2010)CrossRefGoogle Scholar
  30. 30.
    J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, Mechanical properties of monolayer graphene oxide. ACS Nano 4, 6557–6564 (2010)CrossRefGoogle Scholar
  31. 31.
    L. Sun, B. Fugetsu. Massive production of graphene oxide from expanded graphite. arXiv:1301.3253 [cond-mat.mtrl-sci], 2013Google Scholar
  32. 32.
    M. del Prado, Lavín López, J.L. Valverde Palomino, M.L. Sánchez Silva, A. Romero Izquierdo, Chapter 5. Optimization of the Synthesis Procedures of Graphene and Graphite Oxide, in Recent Advances in Graphene Research, ed. by P. Kumar Nayak (Ed), (INTECH, 2016), London, UK (2016)Google Scholar
  33. 33.
    (a) W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958); (b) K.-H. Liao, A. Mittal, S. Bose, C. Leighton, K.A. Khoyan, C.W. Macosko, Aqueous only route toward graphene from graphite oxide. ACS Nano. 5, 1253–1258 (2011)Google Scholar
  34. 34.
    O. Jankovský, M. Nováček, J. Luxa, et al., Concentration of nitric acid strongly influences chemical composition of graphite oxide. Chem. Eur. J. 23(26), 6432–6440 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Tang, X. Li, R. Ji, K.S. Teng, G. Tai, J. Ye, C. Wei, S.P. Lau, Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22(12), 5676 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Paiva Pousa Soares, R. de Lacerda Baptista, D. Vargas Cesar, Solvothermal reduction of graphite oxide using alcohols. Mat. Res. 21(1) (2018). https://doi.org/10.1590/1980-5373-mr-2017-0726
  37. 37.
    S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRefGoogle Scholar
  39. 39.
    S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1), 103 (2016)CrossRefGoogle Scholar
  40. 40.
    A.G. Bannov, J. Prášek, O. Jašek, L. Zajíˇcková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors 17, 320 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Jamatia, A. Gupta, B. Dam, M. Saha, A. Kumar Pal, Graphite oxide: a metal free highly efficient carbocatalyst for the synthesis of 1,5-benzodiazepines under room temperature and solvent free heating conditions. Green Chem. 19, 1576–1585 (2017)CrossRefGoogle Scholar
  42. 42.
    V. Parra-Elizondo, B. Escobar-Morales, E. Morales, D. Pacheco-Catalán, Effect of carbonaceous support between graphite oxide and reduced graphene oxide with anchored Co3O4 microspheres as electrode-active materials in a solid-state electrochemical capacitor. J. Solid State Electrochem. 21(4), 975–985 (2017)CrossRefGoogle Scholar
  43. 43.
    Z. Zeng, L. Yang, Q. Zeng, H. Lou, et al., Synthesis of quenchable amorphous diamond. Nat. Commun. 8, 322 (2017)CrossRefGoogle Scholar
  44. 44.
    Y. Lin, L. Zhang, H.-k. Mao, et al., Amorphous diamond: a high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011)CrossRefGoogle Scholar
  45. 45.
    Y. Dilek, J. Yang, Ophiolites, diamonds, and ultrahigh-pressure minerals: new discoveries and concepts on upper mantle petrogenesis. Lithosphere 10(1), 3–13 (2018)CrossRefGoogle Scholar
  46. 46.
    P. Cartigny, M. Palot, E. Thomassot, J.W. Harris, Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42(1), 699–732 (2014)CrossRefGoogle Scholar
  47. 47.
    F. Nabiei, J. Badro, T. Dennenwaldt, et al., A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nat. Commun. 9, 1327 (2018)CrossRefGoogle Scholar
  48. 48.
    P.V. Zinin, A.V. Nozhkina, R.I. Romanov, et al., Synthesis, characterization of elastic and electrical properties of diamond-like BCx nano-phases synthesized under high and low pressures. MRS Adv. 3(1–2), 45–52 (2018). (Nanomaterials)CrossRefGoogle Scholar
  49. 49.
    S. Fromentin. Resistivity of Carbon, Diamond. The Physics Factbook. Ed. Glenn Elert (2004). Accessed 7 June 2018Google Scholar
  50. 50.
    A. Shatskiy, D. Yamazaki, G. Morard, T. Cooray, T. Matsuzaki, Y. Higo, K. Funakoshi, H. Sumiya, E. Ito, T. Katsura, Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Rev. Sci. Instrum. 80(2), 023907 (2009)CrossRefGoogle Scholar
  51. 51.
    W. Grochala, Diamond: electronic ground state of carbon at temperatures approaching 0 K. Angew. Chem. Int. Ed. 53(14), 3680–3683 (2014)CrossRefGoogle Scholar
  52. 52.
    Y. Palyanov, I. Kupriyanov, Y. Borzdov, D. Nechaev, Y. Bataleva, HPHT diamond crystallization in the Mg-Si-C system: effect of Mg/Si composition. Crystals 7(5), 119 (2017)CrossRefGoogle Scholar
  53. 53.
    B.I. Pepekin, Synthesis of diamond: a review. Russ. J. Phys. Chem. B 4(5), 769–772 (2010)CrossRefGoogle Scholar
  54. 54.
    F.P. Bundy, R.C. DeVries, Diamond: high-pressure synthesis, in Reference Module in Materials Science and Materials Engineering, (Elsevier Science, In, 2016)Google Scholar
  55. 55.
    C. Chen, Q. Chen, Recent development in diamond synthesis. Int. J. Mod. Phys. B 22(4), 309–326 (2008)CrossRefGoogle Scholar
  56. 56.
    J. Narayana, A. Bhaumik, Research update: direct conversion of amorphous carbón into diamond at ambient pressures and temperatures in air. APL Mater. 3, 100702 (2015)CrossRefGoogle Scholar
  57. 57.
    S. Botti, M. Amsler, J.A. Flores-Livas, et al., Carbon structures and defect planes in diamond at high pressure. Phys. Rev. B 88, 014102 (2013)CrossRefGoogle Scholar
  58. 58.
    Z. Lou, Q. Chen, Y. Zhang, W. Wang, Y. Qian, Diamond formation by reduction of carbon dioxide at low temperatures. J. Am. Chem. Soc. 125, 9302–9303 (2003)CrossRefGoogle Scholar
  59. 59.
    P. Ji, J. Yu, T. Huang, et al., Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition. Plasma Sci. Technol. 20, 025505 (2018). (6pp)CrossRefGoogle Scholar
  60. 60.
    M. Chen, J. Shu, X. Xie, D. Tan, H.-k. Mao, Natural diamond formation by self-redox of ferromagnesian carbonate. Proc. Natl. Acad. Sci. 115(11), 2676–2680 (2018). 201720619CrossRefGoogle Scholar
  61. 61.
    Y. Li, C. Wang, N. Chen, et al., Significant improvement of multi-seed method of diamond synthesis by adjusting the lateral cooling water temperature. Cryst. Eng. Comm. 19, 6681–6685 (2017)CrossRefGoogle Scholar
  62. 62.
    M. Schwander, K. Partes, A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20(9), 1287–1301 (2011)CrossRefGoogle Scholar
  63. 63.
    H. Kato, H. Yamada, S. Ohmagari, et al., Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion. Diam. Relat. Mater. 86, 15–19 (2018)CrossRefGoogle Scholar
  64. 64.
    G.S. RistićI, M.S. TrticaI, Š.S. Miljanić, Diamond synthesis by lasers: recent progress. Quím. Nova 35(7), 1417–1422 (2012)Google Scholar
  65. 65.
    F.C.B. Maia, R.E. Samad, J. Bettini, R.O. Freitas, N.D. Vieira Junior, N.M. Souza-Neto, Synthesis of diamond-like phase from graphite by ultrafast laser driven dynamical compression. Sci. Rep 5, 11812 (2015)CrossRefGoogle Scholar
  66. 66.
    Q. Liang, C.-s. Yan, J. Lai, Y.-f. Meng, et al., Large Area Single-Crystal Diamond Synthesis by 915 MHz Microwave Plasma-Assisted Chemical Vapor Deposition. Cryst. Growth Des. 14(7), 3234–3238 (2014)CrossRefGoogle Scholar
  67. 67.
    C. Luo, X. Qi, C. Pan, W. Yang, Diamond synthesis from carbon nanofibers at low temperature and low pressure. Sci. Rep. 5, 13879 (2015)CrossRefGoogle Scholar
  68. 68.
    L.F. Dobrzhinetskaya, H.W. Green, Diamond synthesis from graphite in the presence of water and SiO2: implications for diamond formation in quartzites from Kazakhstan. Int. Geol. Rev. 49(5), 389–400 (2007)CrossRefGoogle Scholar
  69. 69.
    N. Chertkova, S. Yamashita, E. Ito, A. Shimojuku, High-pressure synthesis and application of a 13C diamond pressure sensor for experiments in a hydrothermal diamond anvil cell. Mineral. Mag. 78(7), 1677–1685 (2014)CrossRefGoogle Scholar
  70. 70.
    D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. Published by Maney for the Institute and ASM International 52(1), 29–64 (2007)CrossRefGoogle Scholar
  71. 71.
    D. Varshney, G. Morell, B.R. Weiner, V. Makarov. Low-energy, hydrogen-free method of diamond synthesis. U.S. Patent 8608850B1, 2009Google Scholar
  72. 72.
    N.A. Bulienkov, E.A. Zheligovskaya, O.P. Chernogorova, E.I. Drozdova, I.N. Ushakova, E.A. Ekimov, Nonequilibrium diamond growth during the high-temperature high-pressure synthesis of a composite material made of a mixture of cobalt and fullerene powders. Russ. Metall. (Metally) 2018(1), 35–41 (2018)CrossRefGoogle Scholar
  73. 73.
    Y.N. Palyanov, I.N. Kupriyanov, Y.M. Borzdov, Y.V. Bataleva, High-pressure synthesis and characterization of diamond from an Mg–Si–C system. Cryst. Eng. Comm. 17, 7323–7331 (2015)CrossRefGoogle Scholar
  74. 74.
    J.E. Shigley, Identifying Lab-Grown Diamonds (2016) https://www.gia.edu/identifying-lab-grown-diamonds. Accessed 7 June 2018
  75. 75.
    I.V. Klepikov, A.V. Koliadin, E.A. Vasilev, Analysis of type IIb synthetic diamond using FTIR spectrometry. IOP Conf. Ser. Mater. Sci. Eng. 286, 012035 (2017)CrossRefGoogle Scholar
  76. 76.
    S. Eaton-Magaña, J.E. Post, P.J. Heaney, J. Freitas, et al., Using phosphorescence as a fingerprint for the Hope and other blue diamonds. Geology 36(1), 83–86 (2008)CrossRefGoogle Scholar
  77. 77.
    R.B. Simon, J. Anaya, F. Faili, et al., Effect of grain size of polycrystalline diamond on its heat spreading properties. Appl. Phys. Express 9, 061302 (2016)CrossRefGoogle Scholar
  78. 78.
    E. Bernardi, R. Nelz, S. Sonusen, E. Neu, Nanoscale sensing using point defects in single-crystal diamond: recent progress on nitrogen vacancy center-based sensors. Crystals 7(5), 124 (2017)CrossRefGoogle Scholar
  79. 79.
    V. Nadolinny, A. Komarovskikh, Y. Palyanov, Incorporation of large impurity atoms into the diamond crystal lattice: EPR of split-vacancy defects in diamond. Crystals 7(8), 237 (2017)CrossRefGoogle Scholar
  80. 80.
    V.L. Skvortsova, M.I. Samoylovich, A.F. Belyanin, Studies of phase composition of contact sites of diamond crystals and the surrounding rocks. Dokl. Earth Sci. 465(Part 1), 1187–1190 (2015)CrossRefGoogle Scholar
  81. 81.
    Y.M. Belousov, Evolution in time of radiation defects induced by negative pions and muons in crystals with a diamond structure. Crystals 7(6), 174 (2017)CrossRefGoogle Scholar
  82. 82.
    Special Issue “Diamond Crystals”. Y.N. Palyanov (guest editor). Crystals, 2018, 8(2). http://www.mdpi.com/journal/crystals/special_issues/diamond_crystals
  83. 83.
  84. 84.
    J. Robertson, Diamond-like amorphous carbon. Mater Sci. Eng. R Rep. 37(4–6), 129–281 (2002)CrossRefGoogle Scholar
  85. 85.
    D.G. McCulloch, D.R. McKenzie, C.M. Goringe, Ab initio simulations of the structure of amorphous carbon. Phys. Rev. B 61, 2349 (2000)CrossRefGoogle Scholar
  86. 86.
    J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R-Rep. 37, 129 (2002)CrossRefGoogle Scholar
  87. 87.
    J.T. Margraf, V. Strauss, D.M. Guldi, T. Clark, The electronic structure of amorphous carbon nanodots. J. Phys. Chem. B 119(24), 7258–7265 (2015)CrossRefGoogle Scholar
  88. 88.
    V.L. Deringer, G. Csanyi, D.M. Proserpio, Extracting crystal chemistry from amorphous carbon structures. Chem. Phys. Chem. 18, 873–877 (2017)CrossRefGoogle Scholar
  89. 89.
    C.W. Chen, J. Robertson, Surface atomic properties of tetrahedral amorphous carbon. Diamond Relat. Mater. 15, 936–938 (2006)CrossRefGoogle Scholar
  90. 90.
    Overview of Amorphous Carbon Films. In: R.J. Yeo, Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording, Springer Nature Singapore Pte Ltd, Springer Theses, 2017Google Scholar
  91. 91.
    P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)CrossRefGoogle Scholar
  92. 92.
    X. Li, P. Guo, L. Sun, A. Wang, P. Ke, Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction. ACS Appl. Mater. Interfaces 7, 27878–27884 (2015)CrossRefGoogle Scholar
  93. 93.
    I. Balchev, K. Tzvetkova, S. Kolev, et al., Synthesis and characterization of thin amorphous carbon films doped with nitrogen on (001) Si substrates. J Phy. Conf. Ser. 764, 012013 (2016)CrossRefGoogle Scholar
  94. 94.
    H. Gima, A. Zkria, Y. Katamune, R. Ohtani, S. Koizumi, T. Yoshitake, Chemical bonding structural analysis of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition. Appl. Phys. Express 10(1), 015801 (2017)CrossRefGoogle Scholar
  95. 95.
    J.A. Aliaga, G. Alonso-Núñez, T. Zepeda, et al., Synthesis of highly destacked ReS2 layers embedded in amorphous carbon from a metal-organic precursor. J. Non-Cryst. Solids 447, 29–34 (2016)CrossRefGoogle Scholar
  96. 96.
    K. Nakajima, M. Hara, Amorphous carbon with SO3H groups as a solid brønsted acid catalyst. ACS Catal. 2(7), 1296–1304 (2012)CrossRefGoogle Scholar
  97. 97.
    J. Robertson, Amorphous carbon. Adv. Phys. 35, 317 (1986)CrossRefGoogle Scholar
  98. 98.
    G. Huang, L. Yang, X. Ma, J. Jiang, S.H. Yu, H.L. Jiang, Metal–organic framework-templated porous carbon for highly efficient catalysis: the critical role of pyrrolic nitrogen species. Chem. Eur. J. 22, 3470–3477 (2016)CrossRefGoogle Scholar
  99. 99.
    J. Tang, R.R. Salunkhe, H. Zhang, et al., Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 6, 30295, 8 pp (2016)CrossRefGoogle Scholar
  100. 100.
    A. Ishak, M. Rusop, Complex and nano-structured amorphous carbon films from hydrocarbon palm oil as A P-type in photovoltaic heterojunction solar cell applications. Int. J. Sci. Technol. Res. 3(6), 109–113 (2014)Google Scholar
  101. 101.
    Y. Qin, X. Jiang, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005)CrossRefGoogle Scholar
  102. 102.
    K. Judai, N. Iguchi, Y. Hatakeyama, Low-temperature production of genuinely amorphous carbon from highly reactive nanoacetylide precursors. J. Chem. 2016., Article ID 7840687, 1–6 (2016)CrossRefGoogle Scholar
  103. 103.
    J. Narayana, A. Bhaumik, Research update: direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. Appl. Mater. 3, 100702 (2015)CrossRefGoogle Scholar
  104. 104.
    M. Zheng, K. Takei, B. Hsia, et al., Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96, 063110 (2010)CrossRefGoogle Scholar
  105. 105.
    T. Kim, J. Lee, K.-H. Lee, Full graphitization of amorphous carbon by microwave heating. RSC Adv. 6, 24667–24674 (2016)CrossRefGoogle Scholar
  106. 106.
    A.S. Sinitsa, I.V. Lebedeva, A.M. Popov, A.A. Knizhnik, Transformation of amorphous carbon clusters to fullerenes. J. Phys. Chem. C 121, 13396–13404 (2017)CrossRefGoogle Scholar
  107. 107.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations