Advertisement

AIDS-Associated Malignancies

  • Ramya Vangipuram
  • Stephen K. TyringEmail author
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 177)

Abstract

Malignancies were one of the earliest recognized manifestations that led to the description of the acquired immune deficiency syndrome (AIDS). The majority of cancers in AIDS patients are associated with coinfection with oncogenic viruses, such as Epstein–Barr virus, human herpesvirus 8, and human papillomavirus, with resulting malignancies occurring secondary to diminished immune surveillance against viruses and virus-infected tumor cells. Over 50% of AIDS lymphomas are associated with Epstein–Barr virus (EBV) and/or HHV8 infection. HHV8-associated diseases include Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). EBV is associated with several malignancies, including Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Coinfection with HIV and HPV is associated with an increased risk of various squamous cell carcinomas of epithelial tissues. HAART has significantly impacted the incidence, management, and prognosis of AIDS-related malignancies. In addition to changing the natural history of HIV infection in regard to incidence and survival, HAART has dramatically decreased the incidence of certain virally mediated HIV-associated malignancies such as KS and primary CNS lymphoma. The beneficial effects of HAART on these tumors are attributed to drug-mediated HIV suppression and immune reconstitution. However, HAART has had a less favorable impact on EBV- and HPV-related malignancies. This chapter presents an overview of HIV-associated malignancies mediated by HHV-8, EBV, and HPV, and reviews the effect of HAART on the epidemiology, presentation, treatment, and outcomes of these cancers.

Keywords

Human herpesvirus 8 Epstein–Barr virus Human papillomavirus Human immunodeficiency virus Kaposi sarcoma AIDS-associated lymphoma Anogenital cancer 

References

  1. 1.
    Moore PS, Chang Y (1995) Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med 332:1181–1185CrossRefPubMedGoogle Scholar
  2. 2.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191CrossRefGoogle Scholar
  3. 3.
    Soulier J, Grollet L, Oksenhendler E et al (1995) Kaposi’s sarcoma-associated herpesvirus-likeDNAsequences in multicentric Castleman’s disease. Blood 86:1276–80Google Scholar
  4. 4.
    Grossman Z, Isovich J, Schwartz F et al (2002) Absence of Kaposi sarcoma among Ethiopian immigrants to Israel despite high seroprevalence of human herpesvirus 8. Mayo Clin Proc 77:905–909CrossRefPubMedGoogle Scholar
  5. 5.
    Alblashi D, Chatlynne L, Cooper H et al (1999) Seroprevalence of human herpesvirus-8 (HHV-8) in countries of southeast Asia compared to the USA, the Caribbean and Africa. Br J Cancer 81:893–897CrossRefGoogle Scholar
  6. 6.
    Martin N, Ganem D, Osmond D, Page-Shager D et al (1998) Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med 338:948–954CrossRefPubMedGoogle Scholar
  7. 7.
    Smith N, Sabin C, Gopal R et al (1999) Serologic evidence of human herpesvirus 8 transmission by homosexual but not heterosexual sex. J Infect Dis 180:600–606CrossRefPubMedGoogle Scholar
  8. 8.
    Martro E, Esteve A, Schulz T et al (2007) Risk factors for human herpesvirus 8 infection and AIDS-associated Kaposi’s sarcoma among men who have sex with men in a European multicentre study. Int J Cancer 120:1129–1135CrossRefPubMedGoogle Scholar
  9. 9.
    Casper C, Krantz E, Selke S et al (2007) Frequent and asymptomatic oropharyngeal shedding of human herpesvirus 8 among immunocompetent men. J Infect Dis 195:30–36CrossRefPubMedGoogle Scholar
  10. 10.
    Martin J, Osmond D (2000) Invited commentary: determining specific sexual practices associated with human herpesvirus 8 transmission. Am J Epidemiol 151:225–229CrossRefPubMedGoogle Scholar
  11. 11.
    Campbell T, Borok M, Ndemara B et al (2009) Lack of evidence for frequent heterosexual transmission of human herpesvirus 8 in Zimbabwe. Clin Infect Dis 48:1601–1608CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hinojosa T, Lewis DJ, Liu M, Garza G, Vangipuram R, Ramos E, Salas-Alanis JC, Nawas ZY, Tyring SK (2017) Nonepidemic Kaposi sarcoma: a recently proposed category. JAAD Case Rep 3(5):441–443CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Siegel JH, Janis R, Alper JC et al (1969) Disseminaed visceral Kaposi’s sarcoma. Apperance after human renal homograft operation. JAMA 207(8):1493–1496CrossRefPubMedGoogle Scholar
  14. 14.
    Biggar RJ, Chatruvedi AK, Goederr JJ, Engels EA (2007) AIDS-related cancer and severity of immunosuppression in persons with AIDS. J Natl Cancer Inst 99:962–972CrossRefPubMedGoogle Scholar
  15. 15.
    Guihot A, Dupin N, Marcelin AG et al (2006) Low T cell responses to human herpesvirus 8 in patients with AIDS-related and classic Kaposi sarcoma. J Infect Dis 194:1078–1088CrossRefPubMedGoogle Scholar
  16. 16.
    Silverberg MJ, Chao C, Leyden WA et al (2011) HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomarkers Prev 20:2551–2559CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA (2003) Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr 32:527–533CrossRefPubMedGoogle Scholar
  18. 18.
    Engels EA, Pfeiffer RM, Goedert JJ et al (2006) Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS 20:1645–1654CrossRefPubMedGoogle Scholar
  19. 19.
    Simard EP, Pfeiffer RM, Engels EA (2011) Cumulative incidence of cancer among individuals with acquired immunodeficiency syndrome in the United States. Cancer 117:1089–1096CrossRefPubMedGoogle Scholar
  20. 20.
    Dezube BJ, Pantanowitz L, Aboulafia DM (2004) Management of AIDS-related Kaposi sarcoma advences in target discover and treatment. AIDS Read 14(5):236–351PubMedGoogle Scholar
  21. 21.
    Danzig JB, Brandt LJ, Reinus JF, Klein RS (1991) Gastrointestinal malignancy in patients with AIDS. Am J Gastrotenterol 86(6):715–718Google Scholar
  22. 22.
    Sigel K, Pitts R, Crothers K (2016) Lung Malignancies in HIV Infection. Semin Respir Crit Care Med 37(2):267–276CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Krown SE, Testa MA, Huang J (1997) AIDS-related Kaposi׳s sarcoma: prospective validation of the AIDS Clinical Trials Group staging classification. AIDS clinical trials group oncology committee. J Clin Oncol 15:3085–3092CrossRefPubMedGoogle Scholar
  24. 24.
    Nasti G, Talamini R, Antinori A et al (2003) AIDS-related Kaposi’s Sarcoma: evaluation of potential new prognostic factors and assessment of the AIDS clinical trial group staging system in the Haart Era—the Italian cooperative group on AIDS and tumors and the Italian Cohort of Patients Naive from Antiretrovirals. J Clin Oncol 21:2876–2882CrossRefPubMedGoogle Scholar
  25. 25.
    International Collaboration on HIV and Cancer (2000) Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst 92:1823–1830CrossRefGoogle Scholar
  26. 26.
    Bower M, Fox P, Fife J et al (1999) Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi’s sarcoma. AIDS 13:2105–2111CrossRefPubMedGoogle Scholar
  27. 27.
    Krown SE (2004) Highly active antiretroviral therapy in AIDS-associated Kaposi’s sarcoma: implications for the design of therapeutic trials in patients with advanced, symptomatic Kaposi’s sarcoma. J Clin Oncol 22:399–402CrossRefPubMedGoogle Scholar
  28. 28.
    Bower M, Weir J, Francis N et al (2009) The effect of HAART in 254 consecutive patients with AIDS-related Kaposi’s sarcoma. AIDS 23:1701–1706CrossRefPubMedGoogle Scholar
  29. 29.
    Sgadari C, Monini P, Brillari F, Ensoli B (2003) Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth. Lancet Oncol 4(9):537–547CrossRefPubMedGoogle Scholar
  30. 30.
    Martinez V, Caumes E, Gabotti L et al (2006) Remission from Kaposi’s sarcoma on HAART is associated with suppression of HIV replication and is independent of protease inhibitor therapy. Br J Cancer 94:1000–1006CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nasti G, Errante D, Talamini R et al (2000) Vinorelbine is an effective and safe drug for AIDS-related Kaposi’s sarcoma: results of a phase II study. J Clin Oncol 18:1550–1557CrossRefPubMedGoogle Scholar
  32. 32.
    Saville MW, Lietzau J, Pluda JM, Feuerstein I, Odom J, Wilson WH, Humphrey RW, Feigal E, Steinberg SM, Broder S et al (1995) Treatment of HIV-associated Kaposi’s sarcoma with paclitaxel. Lancet 346(8966):26–28CrossRefPubMedGoogle Scholar
  33. 33.
    Little RF, Wyvill KM, Pluda JM et al (2000) Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J Clin Oncol 18:2593–2602CrossRefPubMedGoogle Scholar
  34. 34.
    Dezube BJ, Krown SE, Lee JY, Bauer KS, Aboulafia DM (2006) Randomized phase II trial of matrix metalloproteinase inhibitor COL-3 in AIDS-related Kaposi׳s sarcoma: an AIDS Malignancy Consortium Study. J Clin Oncol 24:1389–1394CrossRefPubMedGoogle Scholar
  35. 35.
    Castleman B, Iverson L, Menendez VP (1956) Localized mediastinal lymph node hyperplasia resembling thymoma. Cancer 9(4):822–830CrossRefPubMedGoogle Scholar
  36. 36.
    Peterson BA, Frizzera G (1993) Multicentric Castelman’s disease. Semin Oncol 20(6):636–647PubMedGoogle Scholar
  37. 37.
    Lachant NA, Sun NC, Leong LA et al (1985) Multicentric angiofollicular lymph node hyperplasia (Casttleman’s disease) followed by Kaposi’s sarcoma in two homosexual males with the acquired immunodeficiency syndrome (AIDS). Am J Clin Pathol 83(1):27–33CrossRefPubMedGoogle Scholar
  38. 38.
    Oksenhendler E, Boulanger E, Galicier E et al (2002) High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood 99(7):2331–2336CrossRefPubMedGoogle Scholar
  39. 39.
    Powles T, Stebbing J, Bazeos A et al (2009) The role of immune suppression and HHV-8 in the increasing incidence of HIV-associated multicentric Castleman’s disease. Ann Oncol 20:775–779CrossRefPubMedGoogle Scholar
  40. 40.
    Oksenhendler E, Duarte M, Soulier J et al (1996) Multicentric Castleman’s disease in HIV infection: a clinical and pathological study of 20 patients. AIDS 10:61–67CrossRefPubMedGoogle Scholar
  41. 41.
    Oksenhendler E, Carcelain G, Aoki Y et al (2000) High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric castleman disease in HIV-infected patients. Blood 96:2069–2073PubMedGoogle Scholar
  42. 42.
    Polizzotto MN, Uldrick TS, Wang V et al (2013) Human and viral interleukin-6 and other cytokines in Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Blood 122:4189–4198CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R (2015) Kaposi Sarcoma–associated Herpesvirus-associated Malignancies: epidemiology, pathogenesis, and advances in treatment. Semin Oncol 42(2):223–246CrossRefPubMedGoogle Scholar
  44. 44.
    Polizzotto MN, Uldrick TS, Hu D, Yarchoan R (2012) Clinical manifestations of Kaposi sarcoma herpesvirus lytic activation: multicentric Castleman disease (KSHV-MCD) and the KSHV inflammatory cytokine syndrome. Front Microbiol 3:73CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gerard L, Berezne A, Galicier L et al (2007) Prospective study of rituximab in chemotherapy-dependent human immunodeficiency virus associated multicentric Castleman’s disease: ANRS 117 CastlemaB Trial. J Clin Oncol 25(22):3350–3356CrossRefPubMedGoogle Scholar
  46. 46.
    Bower M, Pria AD, Coyle M et al (2014) Diagnostic criteria schemes for multicentric Castleman disease in 75 cases. J Acquir Immune Defic Syndr 65:e80–e82CrossRefPubMedGoogle Scholar
  47. 47.
    Mylona EE, Baranoutis IG, Lekakis LJ et al (2008) Castleman’s disease in HIV infection: a systematic review of the literature. AIDS Rev 10:25–35PubMedGoogle Scholar
  48. 48.
    Bower M, Newsom-Davis T, Naresh K et al (2011) Clinical features and outcome in HIV-associated multicentric Castleman’s disease. J Clin Oncol 29:2481–2486CrossRefPubMedGoogle Scholar
  49. 49.
    Ide M, Kawahi Y, Izumi Y et al (2006) Long-term remission in HIV-negative patients with multicentric Castleman’s disease using rituximab. Eur J Haematol 76:119–123CrossRefPubMedGoogle Scholar
  50. 50.
    Pantanowitz L, Fruh K, Marconi S et al (2008) Pathology of rituximab-induced Kaposi sarcoma flare. BMC Clin Pathol 8:7CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Van Rhee F, Wong RS, Munshi N et al (2014) Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol 15:966–974CrossRefPubMedGoogle Scholar
  52. 52.
    Kawabata H, Kadowaki N, Nishikori M et al (2013) Clinical features and treatment of multicentric castleman’s disease: a retrospective study of 21 Japanese patients at a single institute. J Clin Exp Hematop 53:69–77CrossRefPubMedGoogle Scholar
  53. 53.
    Kurzrock R, Voorhees PM, Casper C et al (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-hodgkin lymphoma, multiple myeloma, or castleman disease. Clin Cancer Res 19:3659–3670CrossRefGoogle Scholar
  54. 54.
    Knowles DM, Inghirami G, Ubriaco A et al (1989) Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood (73)3:792–799Google Scholar
  55. 55.
    Nador RG, Cesarman E, Chadburn A et al (1996) Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi׳s sarcoma-associated herpes virus. Blood 88:645–656PubMedGoogle Scholar
  56. 56.
    Boulanger E, Gerard L, Gabarre J et al (2005) Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol 23:4372–4380CrossRefPubMedGoogle Scholar
  57. 57.
    Chadburn A, Hyjek E, Mathew E et al (2004) KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol 28:1401–1416CrossRefPubMedGoogle Scholar
  58. 58.
    Cesarman E, Chang Y, Moore PS et al (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191CrossRefGoogle Scholar
  59. 59.
    Arora N, Gupta A, Sadeghi N (2017) Primary effusion lymphoma: current concepts and management. Curr Opin Pulm Med 23(4):365–370CrossRefPubMedGoogle Scholar
  60. 60.
    Gasperini P, Tosato G (2009) Targeting the mammalian target of Rapamycin to inhibit VEGF and cytokines for the treatment of primary effusion lymphoma. Leukemia 23:1867–1874CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bhatt S, Ashlock BM, Natkunam Y et al (2013) CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood 122:1233–1242CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Young LS, Yap LF, Murray PG (2016) Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16:789–802CrossRefGoogle Scholar
  63. 63.
    Bellan C, Lazzi S, DeFalco G et al (2003) Burkitt’s lymphoma: new insights into molecular pathogenesis. J Clin Pathol 56:188–193CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ramalingam D, Kieffer-Kwon P, Ziegelbauer JM (2012) Emerging themes from EBV and KSHV microRNA targets. Viruses 4(9):1687–1710CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nagy N, Klein G, Klein E (2009) To the genesis of Burkitt lymphoma: regulation of apoptosis by EBNA-1 and SAP may determine the fate of Ig-myc translocation carrying B lymphocytes. Semin Cancer Biol 19(6):407–410CrossRefPubMedGoogle Scholar
  66. 66.
    Wang D, Liebowitz D, Kieff E (1985) An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840CrossRefPubMedGoogle Scholar
  67. 67.
    Knowles D (2003) Etiology and pathogenesis of AIDS-related non-Hodgkin’s lymphoma. Hematol Oncol Clin N Am 17:785–820CrossRefGoogle Scholar
  68. 68.
    Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA (2003) Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr 32:527–533CrossRefPubMedGoogle Scholar
  69. 69.
    McClain KL, Joshi VV, Murphy SB (1996) Cancers in children with HIV infection. Hematol Oncol Clin North Am 10:1189–1201CrossRefPubMedGoogle Scholar
  70. 70.
    Ledergerber B, Telenti A, Egger M (1999) Risk of HIV related Kaposi’s sarcoma and Non-Hodgkin’s lymphoma with potent antiretroviral therapy: prospective cohort study. Br Med J 319:23–24CrossRefGoogle Scholar
  71. 71.
    Stebbing J, Gazzard B, Mandalia S et al (2004) Antiretroviral treatment regimens and immune parameters in the prevention of systemic AIDS-related non-Hodgkin’s lymphoma. J Clin Oncol 22:2177–2183CrossRefPubMedGoogle Scholar
  72. 72.
    Besson C, Goubar A, Gabarre J et al (2001) Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood 98:2339–2344 [PubMed]CrossRefPubMedGoogle Scholar
  73. 73.
    Engels EA, Pfeiffer RM, Goedert JJ et al (2006) Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS 20:1645–1654CrossRefPubMedGoogle Scholar
  74. 74.
    Simard EP, Pfeiffer RM, Engels EA (2011) Cumulative incidence of cancer among individuals with acquired immunodeficiency syndrome in the United States. Cancer 117:1089–1096CrossRefPubMedGoogle Scholar
  75. 75.
    Simard EP, Engels EA (2010) Cancer as a cause of death among people with AIDS in the United States. Clin Infect Dis 51(8):957–962CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Grogg KL, Miller RF, Dogan A (2007) HIV infection and lymphoma. J Clin Pathol 60:1365–1372CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bayraktar S, Bayraktar UD, Ramos JC et al (2011) Primary CNS lymphoma in HIV positive and negative patients: comparison of clinical characteristics, outcome and prognostic factors. J Neuro-Oncol 101:257–265CrossRefGoogle Scholar
  78. 78.
    Raez LZ, Patel P, Feun L et al (1998) Natural history and prognostic factors for survival in patients with acquired immune deficiency syndrome (AIDS)-related primary central nervous system lymphoma (PCNSL). Crit Rev Oncog 9:199–208PubMedGoogle Scholar
  79. 79.
    Hoang-Xuan K, Bessell E, Bromberg J (2015) Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients: guidelines from the European Association for Neuro-Oncology. Lancet Oncol 16(7):e322–e332.  https://doi.org/10.1016/S1470-2045(15)00076-5CrossRefPubMedGoogle Scholar
  80. 80.
    Guech-Ongey M, Simard EP, Anderson WF et al (2010) AIDS-related Burkitt lymphoma in the United States: what do age and CD4 lymphocyte patterns tell us about etiology and/or biology? Blood 116:5600–5604CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Davi F, Delecluse HJ, Guiet P et al (1998) Burkitt-like lymphomas in AIDS patients: characterization within a series of 103 human immunodeficiency virus-associated non-Hodgkin’s lymphomas. J Clin Oncol 16:3788–3795CrossRefPubMedGoogle Scholar
  82. 82.
    Xicoy B, Ribera JM, Müller M et al (2014) Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients. Leuk Lymphoma 55:2341–2348CrossRefPubMedGoogle Scholar
  83. 83.
    Lim ST, Karim R, Nathwani BN (2005) AIDS-related Burkitt’s lymphoma versus diffuse large-cell lymphoma in the pre-highly active antiretroviral therapy (HAART) and HAART eras: significant differences in survival with standard chemotherapy. J Clin Oncol 23(19):4430–4438 Epub 2005 May 9CrossRefPubMedGoogle Scholar
  84. 84.
    Bibas M, Castillo JJ (2014) Current knowledge on HIV-associated Plasmablastic Lymphoma. Mediterr J Hematol Infect Dis 6(1):e2014064.  https://doi.org/10.4084/MJHID.2014.064CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Delecluse HJ, Anagnostopoulos I, Dallenbach F et al (1997) Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood 89:1413–1420PubMedGoogle Scholar
  86. 86.
    Teruya-Feldstein J, Chiao E, Filippa DA et al (2004) CD20-negative large-cell lymphoma with plasmablastic features: a clinically heterogenous spectrum in both HIV-positive and -negative patients. Ann Oncol 15:1673–1679CrossRefPubMedGoogle Scholar
  87. 87.
    Castillo JJ, Furman M, Beltrán BE et al (2012) Human immunodeficiency virus-associated plasmablastic lymphoma: poor prognosis in the era of highly active antiretroviral therapy. Cancer 118:5270–5277CrossRefPubMedGoogle Scholar
  88. 88.
    Pinzone MR, Fiorica F, Di Rosa M et al (2012) Non-AIDS-defining cancers among HIV-infected people. Eur Rev Med Pharmacol Sci 16:1377–1388PubMedGoogle Scholar
  89. 89.
    Bohlius J, Schmidlin K, Boué F et al (2011) HIV-1-related Hodgkin lymphoma in the era of combination antiretroviral therapy: incidence and evolution of CD4+ T-cell lymphocytes. Blood 117:6100–6108CrossRefPubMedGoogle Scholar
  90. 90.
    Serrano M, Bellas C, Campo E et al (1990) Hodgkin’s disease in patients with antibodies to human immunodeficiency virus: a study of 22 patients. Cancer 65:2248–2254CrossRefPubMedGoogle Scholar
  91. 91.
    Palella FJ Jr, Delaney KM, Moorman AC et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med 338:853–860CrossRefPubMedGoogle Scholar
  92. 92.
    Xicoy B, Ribera JM, Miralles P et al (2007) Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin’s lymphoma. Haematologica 92:191–198CrossRefPubMedGoogle Scholar
  93. 93.
    Park IU, Introcaso C, Dunne EF (2015) Human papillomavirus and genital warts: a review of the evidence for the 2015 centers for disease control and prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis 61(suppl 8):S849–S855CrossRefPubMedGoogle Scholar
  94. 94.
    Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370(9581):59–67CrossRefPubMedGoogle Scholar
  95. 95.
    Cameron JE, Hagensee ME (2007) Human papillomavirus infection and disease in the HIV+ individual. Cancer Treat Res 133:185–213CrossRefPubMedGoogle Scholar
  96. 96.
    Ma Y, Madupu R, Karaoz U et al (2014) Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol 88:4786–4797CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Walboomers JM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19CrossRefPubMedGoogle Scholar
  98. 98.
    Parkin DM, Bray F (2006) Chapter 2: the burden of HPV-related cancers. Vaccine 24(Suppl. 3):11–25CrossRefGoogle Scholar
  99. 99.
    Hariri S, Unger ER, Powell SE et al (2012) Human papillomavirus genotypes in high-grade cervical lesions in the United States. J Infect Dis 206(12):1878–1886 [PubMed]CrossRefPubMedGoogle Scholar
  100. 100.
    Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA (2015) Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst 107(4)Google Scholar
  101. 101.
    Ellerbrock TV, Chiasson MA, Bush TJ et al (2000) Incidence of cervical squamous intraepithelial lesions in HIV-infected women. JAMA 283(8):1031–1037CrossRefGoogle Scholar
  102. 102.
    Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560.  https://doi.org/10.1038/nrc2886CrossRefPubMedGoogle Scholar
  103. 103.
    Piketty C, Selinger-Leneman H, Bouvier AM (2012) Incidence of HIV-related anal cancer remains increased despite long-term combined antiretroviral treatment: results from the French hospital database on HIV. J Clin Oncol 30:4360–4366CrossRefPubMedGoogle Scholar
  104. 104.
    Frisch M, Biggar RJ, Goedert JJ (2000) Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst 92:1500–1510.  https://doi.org/10.1093/jnci/92.18.1500CrossRefGoogle Scholar
  105. 105.
    Lacey CJ (2005) Therapy for genital human papillomavirus-related disease. J Clin Virol 32(Suppl. S1):82–90.  https://doi.org/10.1016/j.jcv.2004.10.020CrossRefGoogle Scholar
  106. 106.
    Heard I (2009) Prevention of cervical cancer in women with HIV. Curr Opin HIV AIDS 4:63–73.  https://doi.org/10.1097/coh.0b013e328319bcbe [PubMed] [Cross Ref]CrossRefPubMedGoogle Scholar
  107. 107.
    Smith JS, Moses S, Hudgens M, Parker CB, Agot K, Maclean I et al (2010) Increased risk of HIV acquisition among Kenyan men with human papillomavirus infection. J Infect Dis 201:1677–1685CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Chin-Hong PV, Husnik M, Cranston RD et al (2009) Anal human papillomavirus infection is associated with HIV acquisition in men who have sex with men. AIDS 23:1135–1142CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chaturvedi AK, Madeleine MM, Biggar RJ, Engels EA (2009) Risk of human papillomavirus-associated cancers among persons with AIDS. J Natl Cancer Inst 101:1120–1130CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Reusser NM, Downing C, Guidry J, Tyring SK (2015) HPV carcinomas in immunocompromised patients. J Clin Med 4(2):260–281.  https://doi.org/10.3390/jcm4020260CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Meyer JE, Panico VJA, Marconato HMF et al (2013) HIV positivity but not HPV/p16 status is associated with higher recurrence rate in anal cancer. J Gastrointest Cancer 44:450–455CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ghosn M, Kourie HR, Abdayem P, Antoun J, Nasr D (2015) Anal cancer treatment: current status and future perspectives. World J Gastroenterol 21(8):2294–2302CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    van der Burg SH, Palefsky JM (2009) Human immunodeficiency virus and human papilloma virus—why HPV-induced lesions do not spontaneously resolve and why therapeutic vaccination can be successful. J Transl Med 7:108CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Abercrombie PD, Korn AP (1998) Vulvar intraepithelial neoplasia in women with HIV. AIDS Patient Care STDS 12:251–254CrossRefPubMedGoogle Scholar
  115. 115.
    Jamieson DJ, Paramsothy P, Cu-Uvin S et al (2006) HIV epidemiology research study group. Vulvar, vaginal, and perianal intraepithelial neoplasia in women with or at risk for human immunodeficiency virus. Obstet Gynecol 107:1023–1028CrossRefGoogle Scholar
  116. 116.
    Sirera G, Videla S, Pinol M et al (2006) High prevalence of human papillomavirus infection in the anus, penis and mouth in HIVpositive men. AIDS 20:1201–1204CrossRefPubMedGoogle Scholar
  117. 117.
    Beachler DC, Weber KM, Margolick JB et al (2012) Risk factors for oral HPV infection among a high prevalence population of HIV positive and at-risk HIV-negative adults. Cancer Epidemiol Biomarkers Prev 21:122–133CrossRefPubMedGoogle Scholar
  118. 118.
    Lacey CJ (2005) Therapy for genital human papillomavirus-related disease. J Clin Virol 32(Suppl. S1):82–90CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of Texas Health Sciences Center at HoustonHoustonUSA

Personalised recommendations