Advertisement

Knowledge Discovery in Sport

  • Iztok FisterEmail author
  • Iztok Fister Jr.
  • Dušan Fister
Chapter
Part of the Adaptation, Learning, and Optimization book series (ALO, volume 22)

Abstract

The chapter deals with knowledge discovery from data in sport. In the narrower sense, knowledge discovery from data refers to a data mining that also incorporates methods from other domains, like statistics, pattern recognition, machine learning, visualization, association rule mining and computational intelligence algorithms.

References

  1. 1.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, New York, NY (2011)zbMATHGoogle Scholar
  2. 2.
    Breckner, D., Abel, P.: Principles of Business Computer Programming. Prentice Hall, Upper Saddle River, NJ (1971)Google Scholar
  3. 3.
    Hrovat, G., Fister Jr., I., Yermak, K., Stiglic, G., Fister, I.: Interestingness measure for mining sequential patterns in sports. J. Intell. Fuzzy Syst. 29(5), 1981–1994 (2015)CrossRefGoogle Scholar
  4. 4.
    Baca, A., Dabnichki, P., Heller, M., Kornfeind, P.: Ubiquitous computing in sports: a review and analysis. J. Sports Sci. 27(12), 1335–1346 (2009).  https://doi.org/10.1080/02640410903277427CrossRefGoogle Scholar
  5. 5.
    Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: Proceedings of the 23th International Conference on Architecture of Computing Systems, ARCS 2010, pp. 167–176. VDE Verlag, Berlin (2010)Google Scholar
  6. 6.
    Chi, E.H.: Sensors and ubiquitous computing technologies in sports. WIT Trans. State Art Sci. Eng. 32, 249–268 (2008).  https://doi.org/10.2495/978-1-84564-064-4/09CrossRefGoogle Scholar
  7. 7.
    Knudson, D.: Future trends in the kinesiology sciences. Quest 68(3), 348–360 (2016).  https://doi.org/10.1080/00336297.2016.1184171CrossRefGoogle Scholar
  8. 8.
    Hrovat, G., Stiglic, G., Kokol, P., Ojsteršek, M.: Contrasting temporal trend discovery for large healthcare databases. Comput. Methods Programs Biomed. 113(1), 251–257 (2014).  https://doi.org/10.1016/j.cmpb.2013.09.005CrossRefGoogle Scholar
  9. 9.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22, 207–216 (1993)CrossRefGoogle Scholar
  10. 10.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1994)Google Scholar
  11. 11.
    Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000).  https://doi.org/10.1109/69.846291CrossRefGoogle Scholar
  12. 12.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1–12 (2000).  https://doi.org/10.1145/335191.335372CrossRefGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)zbMATHGoogle Scholar
  14. 14.
    Claparede, E., Stern, W.: La psyschologie de l’intelligence. Scientia 22, 253–268 (1917)Google Scholar
  15. 15.
    Büchler, K.: Die Kriese der Psychologie. Fischer, Jena (1927)Google Scholar
  16. 16.
    Piaget, J.: The Psychology of Intelligence. Routledge Classics, New York, NY (2001)Google Scholar
  17. 17.
    Russel, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, New Jersey (2009)Google Scholar
  18. 18.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  19. 19.
    Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Zadeh, L.A.: Fuzzy algorithms. Inf. Control 12(2), 94–102 (1968).  https://doi.org/10.1016/S0019-9958(68)90211-8MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Dasgupta, D.: Information processing in the immune system. In: Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.) New Ideas in Optimization, 3rd edn. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999)Google Scholar
  22. 22.
    Erdos, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959).  https://doi.org/10.4153/CJM-1959-003-9MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley Publishing (2007)Google Scholar
  24. 24.
    Darwin, C.: On the Origin of Species. Harvard University Press, London (1852)Google Scholar
  25. 25.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA (1989)zbMATHGoogle Scholar
  26. 26.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, USA (1994)zbMATHGoogle Scholar
  27. 27.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming. Genetic Algorithms. Oxford University Press, Oxford, UK (1996)zbMATHGoogle Scholar
  28. 28.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Willey, New York, US (1966)zbMATHGoogle Scholar
  29. 29.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).  https://doi.org/10.1023/A:1008202821328MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  31. 31.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010).  https://doi.org/10.1007/s10462-009-9137-2CrossRefGoogle Scholar
  32. 32.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  33. 33.
    Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Proceed NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy (1989)Google Scholar
  34. 34.
    Kennedy, J., Eberhart, R.C.: The particle swarm optimization; social adaptation in information processing. In: Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.) New Ideas in Optimization, 3rd edn. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999)Google Scholar
  35. 35.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12538-6_6CrossRefGoogle Scholar
  36. 36.
    Yang, X.S., Deb, S.: Cuckoo search via levy flights. In: World Congress & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publication (2009)Google Scholar
  37. 37.
    Yang, X.S.: Firefly algorithm. In: Nature-Inspired Metaheuristic Algorithms, pp. 79–90. Luniver Press, London, UK (2008)Google Scholar
  38. 38.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Glob. Optim. 39(3), 459–471 (2007).  https://doi.org/10.1007/s10898-007-9149-xMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999)Google Scholar
  40. 40.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983).  https://doi.org/10.1126/science.220.4598.671MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Fister Jr., I., Fister, D., Yang, X.S.: A hybrid bat algorithm. Electrotech. Rev. 80(1–2), 1–7 (2013)zbMATHGoogle Scholar
  42. 42.
    Shlens, J.: A tutorial on principal component analysis. In: Systems Neurobiology Laboratory, Salk Institute for Biological Studies (2005)Google Scholar
  43. 43.
    Rauter, S., Fister Jr., I., Fister, I.: A collection of sport activity files for data analysis and data mining (2015). Technical ReportGoogle Scholar
  44. 44.
    Rauter, S., Fister Jr., I., Fister, I.: A collection of sport activity files for data analysis and data mining 2016a (2016). Technical ReportGoogle Scholar
  45. 45.
    Fister Jr., I., Rauter, S., Fister, D., Fister, I.: A collection of sport activity datasets for data analysis and data mining 2016b (2016). Technical ReportGoogle Scholar
  46. 46.
    Fister Jr., I., Rauter, S., Fister, D., Fister, I.: A collection of sport activity datasets with an emphasis on powermeter data (2017). Technical ReportGoogle Scholar
  47. 47.
    Perl, J., Baca, A.: Application of neural networks to analyze performance in sports. In: Proceedings of the 8th Annual Congress of the European College of Sport Science, Salzburg: ECSS, vol. 342 (2003)Google Scholar
  48. 48.
    Brown, N., Bichler, S., Fiedler, M., Alt, W.: Fatigue detection in strength training using three-dimensional accelerometry and principal component analysis. Sports Biomech. 15(2), 139–150 (2016)CrossRefGoogle Scholar
  49. 49.
    Deak, G.F., Miron, R., Avram, C.C., Adina, A., et al.: Fuzzy based analysis method of high-density surface electromyography maps for physical training assessment. In: 2016 IEEE International Conference on : Automation, Quality and Testing, Robotics (AQTR), pp. 1–6. IEEE (2016)Google Scholar
  50. 50.
    Chen, H.: Building a basketball shooting model based on neural networks and a genetic algorithm. World Trans. Eng. Technol. Educ. 11(3), 310–315 (2013)Google Scholar
  51. 51.
    Me, E., Unold, O., et al.: Machine learning approach to model sport training. Comput. Hum. Behav. 27(5), 1499–1506 (2011)CrossRefGoogle Scholar
  52. 52.
    Balague, N., Torrents, C., Hristovski, R., Davids, K., Araújo, D.: Overview of complex systems in sport. J. Syst. Sci. Complex. 26(1), 4–13 (2013)zbMATHCrossRefGoogle Scholar
  53. 53.
    Brzostowski, K., Drapała, J., Grzech, A., Światek, P.: Adaptive decision support system for automatic physical effort plan generation-data-driven approach. Cybern. Syst. 44(2–3), 204–221 (2013)CrossRefGoogle Scholar
  54. 54.
    Henriet, J.: Artificial intelligence-virtual trainer: an educative system based on artificial intelligence and designed to produce varied and consistent training lessons. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 111–132 (2016)Google Scholar
  55. 55.
    Baca, A.: Adaptive systems in sports. Social Networks and the Economics of Sports, pp. 115–124. Springer (2014)Google Scholar
  56. 56.
    Wiktorowicz, K., Przednowek, K., Lassota, L., Krzeszowski, T.: Predictive modeling in race walking. Comput. Intell. Neurosci. 2015, 10 (2015)CrossRefGoogle Scholar
  57. 57.
    Fister Jr., I., Ljubič, K., Suganthan, P.N., Perc, M., Fister, I.: Computational intelligence in sports: challenges and opportunities within a new research domain. Appl. Math. Comput. 262, 178–186 (2015)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Fister, I., Rauter, S., Yang, X.S., Ljubič Fister, K., Fister Jr., I.: Planning the sports training sessions with the bat algorithm. Neurocomputing 149, 993–1002 (2015)CrossRefGoogle Scholar
  59. 59.
    Hrovat, G., Fister Jr., I., Yermak, K., Štiglic, G., Fister, I.: Interestingness measure for mining sequential patterns in sports. J. Intell. Fuzzy Syst. 29(5), 1981–1994 (2015)CrossRefGoogle Scholar
  60. 60.
    Fister Jr., I., Rauter, S., Ljubič Fister, K., Fister, D., Fister, I.: Planning fitness training sessions using the bat algorithm. In: 15th Conference on ITAT 2015 (CEUR Workshop Proceedings), vol. 1422, pp. 121–126 (2015). ISSN 1613-0073Google Scholar
  61. 61.
    Fister Jr., I., Fister, I., Fister, D., Ljubič, K., Zhuang, Y., Fong, S.: Towards automatic food prediction during endurance sport competitions. In: 2014 International Conference on Soft Computing and Machine Intelligence (ISCMI), pp. 6–10. IEEE (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia
  2. 2.Faculty of Economics and BusinessUniversity of MariborMariborSlovenia

Personalised recommendations