Ranging Responses to Fruit and Arthropod Availability by a Tufted Capuchin Group (Sapajus apella) in the Colombian Amazon

  • Carolina Gómez-PosadaEmail author
  • Jennifer Rey-Goyeneche
  • Elkin A. Tenorio


Animals’ space use patterns present dynamic responses to the availability of the main food resources that vary on different temporal and spatial scales. Although it is recognized that the interplay between main food resources shapes movement patterns in primates, few studies have simultaneously assessed the impact of fruit and arthropod supply on the ranging patterns of a frugivorous-insectivorous primate. Here, we studied the influence of ripe fruit and arthropod supply on six different ranging behavioral responses—daily distance traveled, home range size, backtracking, turning angles, travel speed, and arthropod-foraging speed—by a group of wild tufted-capuchin monkeys (Sapajus apella) in the Colombian amazon forest, during 1 year. Two approaches were considered: first, we compared the ranging patterns between periods in which ripe fruits and arthropods were abundant with periods of scarcity of both resources; second, we built models to test if predictor variables related to fruit and arthropod availability could explain each one of the ranging behavior variables. Group ranging patterns were larger or tended to be larger during periods of both food resources scarcity, suggesting that capuchins expand their movements throughout their home range in search for food as a response to the combined low food availability. Fruit supply was an influential factor for the daily path length and, marginally, for travel speed, with shorter distances related to a high density of fruiting trees and the capuchins’ tendency to travel to the nearest food source. Arthropod-capture success rate determined the turning angles and the arthropod-foraging speed, with tortuous and faster travels during low prey availability, related to a meticulous and fine-scaled search. There were not conclusive results for backtracking and home range size. Our results showed that the study group modified its ranging behavior according to the supply of their two main food resources, fruits and arthropods; in general, variation in large-scale travels throughout its home range reflected a frugivorous diet, while variation in small-scale movements revealed an insectivorous one.


Tropical lowland forest Arthropods and fruits abundance Capuchin monkey Home range Path length and tortuosity Backtracking Travel and foraging speed Movement patterns 



Research funding was provided by Fundación Natura/COLCIENCIAS.Special thanks to Thomas Defler, director of this project, for his constant support and advice and for the tireless dedication to the study of Colombian primates. To Michael Alberico (†), co-director of this work, for his advice and help. To Conservation International Colombia, for the support provided, especially to Erwin Palacios and Adriana Rodríguez. To Marcelino Días and family, Jaime Castillo, and Ángela Maldonado, for their support in the field. To Isidoro Cabrera and Rodrigo Botina, for the identification of the plant material. To Marcia Muñoz Neyra, for her collaboration in the revision of this document.


  1. Altmann J (1974) Observational study of behavior: sampling methods. Behavior 49:227–265CrossRefGoogle Scholar
  2. Barton K (2018) MuMIn: multi-model inference. R package version 1.40.4. Available at:
  3. Boinski S (1987) Habitat use by squirrel monkeys (Saimiri oerstedii) in Costa Rica. Folia Primatol 49:151–167CrossRefGoogle Scholar
  4. Boinski S, Fowler N (1989) Seasonal patterns in a tropical lowland forest. Biotropica 21:223–233CrossRefGoogle Scholar
  5. Brown A, Zunino G (1990) Dietary variability in Cebus apella in extreme habitats: evidence for adaptability. Folia Primatol 54:187–195CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35CrossRefGoogle Scholar
  7. Calengea C, Draya S, Royer-Carenzia M (2009) The concept of animals’ trajectories from a data analysis perspective. Eco Inform 4:34–41CrossRefGoogle Scholar
  8. Campos FA, Bergstrom ML, Childers A, Hogan JD, Jack KM, Melin AD, Mosdossy KN, Myers MS, Parr NA, Sargeant E, Schoof VAM, Fedigan LM (2014) Drivers of home range characteristics across spatiotemporal scales in a Neotropical primate, Cebus capucinus. Anim Behav 91:93–109CrossRefGoogle Scholar
  9. Chapman C (1988) Patterns of foraging and range use by three species of neotropical primates. Primates 29:177–194CrossRefGoogle Scholar
  10. Chapman CA, Chapman LJ (2000) Determinants of group size in primates: the importance of travel costs. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 24–41Google Scholar
  11. Chapman CA, Bortolamiol S, Matsuda I, Omeja PA, Paim FP, Reyna-Hurtado R, Sengupta R, Valenta K (2018) Primate population dynamics: variation in abundance over space and time. Biodivers Conserv 27:1221–1238CrossRefGoogle Scholar
  12. Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9:129–136CrossRefGoogle Scholar
  13. Crockett CM, Eisenberg JF (1987) Howlers: variations in group size and demography. In: Crockett CM, Eisenberg JF, Smuts BB (eds) Primate societies. The University of Chicago Press, Chicago, pp 54–68Google Scholar
  14. Defler TR (2010) Historia Natural de los Primates Colombianos. Universidad Nacional de Colombia, BogotaGoogle Scholar
  15. Defler TR (2013) Species richness, densities and biomass of nine primate communities in eastern Colombia. Rev Acad Colomb Cienc Exactas Físicas Natur 37(143):253–262CrossRefGoogle Scholar
  16. Defler TR, Defler SB (1996) Diet of a group of Lagothrix lagotricha lagotricha in southeastern Colombia. Int J Primatol 17(2):161–190CrossRefGoogle Scholar
  17. Di Bitetti M (2001) Home range use by the tufted capuchin monkey (Cebus apella nigritus) in a subtropical rainforest of Argentina. J Zool Lond 253:33–45CrossRefGoogle Scholar
  18. Dalgaard P (2010) R Development Core Team: R: A language and environment for statistical computing. Computer programme, Retrieved from
  19. Fragaszy DM, Visalberghi E, Fedigan LM (2004) The complete capuchin: the biology of the genus cebus. Cambridge University Press, Cambridge, UKGoogle Scholar
  20. Garber PA (2000) Evidence for the use of spatial, temporal, and social information by primate foragers. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 261–298Google Scholar
  21. Gómez-Posada C (2003) Estrategias de forrajeo de un grupo provisionado de mico maicero, Cebus apella (Primate: Cebidae) en el Parque Nacional Natural Tinigua, Colombia. In: Pereira V, Nassar F, Savage A (eds) Primatología del Nuevo Mundo: Biología, medicina, manejo y conservación. Centro de Primatología Araguatos, Bogotá, pp 136–146Google Scholar
  22. Gómez-Posada C (2009) Cebus apella: variación del patrón de actividad de acuerdo a la oferta de frutos y artrópodos. In: Alarcón-Nieto G, Palacios E (eds) Estación Biológica Mosiro Itajura-Caparú. Conservación Internacional Colombia, Bogotá, pp 179–185Google Scholar
  23. Gómez-Posada C (2012) Dieta y comportamiento alimentario de un grupo de mico maicero Cebus apella de acuerdo a la variación en la oferta de frutos y artrópodos en la Amazonía colombiana. Acta Amazon 42(3):363–372CrossRefGoogle Scholar
  24. Gursky S (2000) Effect of seasonality on the behavior of an insectivorous primate, Tarsius spectrum. Int J Primatol 21(3):477–495CrossRefGoogle Scholar
  25. Janson CH (2000) Spatial movement strategies: theory, evidence, and challenges. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 165–203Google Scholar
  26. Janson CH, Boinski S (1992) Morphological and behavioral adaptations for foraging in generalist primates: the case of the Cebinae. Am J Anthropol 88:483–498CrossRefGoogle Scholar
  27. Janson CH, Byrne R (2007) What wild primates know about resources: opening up the black box. Anim Cogn 10(3):357–367CrossRefGoogle Scholar
  28. Janson CH, Di Bitetti MS (1997) Experimental analysis of food detection in capuchin monkeys: effects of distance, travel speed and resource size. Behav Ecol Sociobiol 41:7–24CrossRefGoogle Scholar
  29. Ludwig J, Reynolds J (1988) Statistical ecology: a primer on methods and computing. Wiley, New YorkGoogle Scholar
  30. Lynch Alfaro JW, Silva JdSE Jr, Rylands AB (2012) How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. Am J Primatol 74:273–286CrossRefGoogle Scholar
  31. McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, IthacaGoogle Scholar
  32. Melin AD, Fedigan LM, Hiramatsu C, Sendall CL, Kawamura S (2007) Effects of colour vision phenotype on insect capture by a free- ranging population of white-faced capuchins, Cebus capucinus. Anim Behav 73:205–214CrossRefGoogle Scholar
  33. Moegenburg S, Levey D (2003) Do frugivores respond to fruit harvest? An experimental study of short-term responses. Ecology 84(10):2600–2612CrossRefGoogle Scholar
  34. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105(49):19052–19059CrossRefGoogle Scholar
  35. NRC: National Research Council (1981) Techniques for the study of primate population ecology. National Academy Press, Washington, DCGoogle Scholar
  36. Nunn CL van Schaik CP (2002) A comparative approach to reconstructing the socioecology of extinct primates. Plavcan JM, Kay RF, Junger WL van Schaik CP Reconstructing behavior in the primate fossil record. Kluwer Academic/Plenum, New York, 159–215CrossRefGoogle Scholar
  37. Peres C (1994) Primate responses to phenological changes in an Amazonian terra firme forest. Biotropica 25(1):98–112CrossRefGoogle Scholar
  38. Phiphatsuwannachai S, Westcott DA, McKeown A, Savini T (2018) Inter-group variability in seed dispersal by white-handed gibbons in mosaic forest. Biotropica 50:106–115CrossRefGoogle Scholar
  39. Pouydebat E, Borel A, Chotard H, Fragaszy D (2014) Hand preference in fast-moving versus slow-moving actions in capuchin, Sapajus spp., and squirrel monkeys, Saimiri sciureus. Anim Behav 97:113–123CrossRefGoogle Scholar
  40. Raemaekers J (1980) Causes of variation between months in the distances traveled daily by gibbons. Folia Primatol 34:46–60CrossRefGoogle Scholar
  41. Reyna-Hurtado R, Teichroeb JA, Bonnell TR, Hernández-Sarabia RU, Vickers SM, Serio-Silva JC, Sicotte P, Chapman CA (2018) Primates adjust movement strategies due to changing food availability. Behav Ecol 29(2):368–376CrossRefGoogle Scholar
  42. Rímoli J, Strier K, Ferrari S (2008) Seasonal and longitudinal variation in the behavior of free-ranging black tufted capuchins Cebus nigritus (Goldfuss, 1809) in a fragment of Atlantic Forest in Southeastern Brazil. In: Ferrari S, Rímoli J (eds) A Primatologia no Brasil (9). Sociedade Brasileira de Primatologia, Aracaju, pp 130–146Google Scholar
  43. Robinson JG (1986) Seasonal variation in use of time and space by the wedge-capuchin monkey, Cebus olivaceus: implications for foraging theory. Smithson Contrib Zool 431:1–60Google Scholar
  44. Spironello W (2001) The brown capuchin monkey (Cebus apella): ecology and home range requirements in central Amazonia. In: Bierregard RO, Gascon C, Lovejoy TE, Mesquita R (eds) Lessons from Amazonia. Yale University Press, New Haven, pp 271–283Google Scholar
  45. Stevenson P, Quiñones M, Ahumada J (2000) Influence of Fruit Availability on Ecological Overlap among Four Neotropical Primates at Tinigua National Park, Colombia. BIOTROPICA 32(3):533–544CrossRefGoogle Scholar
  46. Terborgh J (1983) Five New World Primates: a study in comparative ecology. Princeton University Press, New JerseyGoogle Scholar
  47. Tujague MP, Janson CH (2017) Wild capuchin monkeys anticipate the amount of ripe fruit in natural trees. Anim Cogn 20:841–853CrossRefGoogle Scholar
  48. Tujague MP, Bacigalupe MA, Lahitte HB, Janson CH (2016) Memoria espacial en monos capuchinos de Argentina: un estudio observacional en vida silvestre. Rev Argent Antropol Biol 18(1):1–13Google Scholar
  49. Vasconcellos A, Andreazze R, Almeida AM, Araujo HFP, Oliveira ES, Oliveira U (2010) Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Rev Bras Entomol 54:471–476CrossRefGoogle Scholar
  50. Wallace RB (2008) Factors influencing spider monkey habitat use and ranging patterns. In: Campbell C (ed) Spider monkeys: behavior, ecology, and evolution of the genus Ateles. Cambridge University Press, Cambridge, UK, pp 138–154CrossRefGoogle Scholar
  51. Williams SE, Middleton J (2008) Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: implications for global climate change. Divers Distrib 14:69–77CrossRefGoogle Scholar
  52. Winkler DW, Jørgensen C, Both C, Houston AI, McNamara JM, Levey DJ, Partecke J, Fudickar A, Kacelnik A, Roshier D, Piersma T (2014) Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov Ecol 2:10CrossRefGoogle Scholar
  53. Zar J (1996) Biostatisical analysis. Prentice Hall, New JerseyGoogle Scholar
  54. Zhang S (1995) Activity and ranging patterns in relation to utilization by brown capuchins (Cebus apella) in French Guiana. Int J Primatol 16:489–507CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carolina Gómez-Posada
    • 1
    • 2
    Email author
  • Jennifer Rey-Goyeneche
    • 3
  • Elkin A. Tenorio
    • 2
  1. 1.Department of BiologyUniversidad del ValleCaliColombia
  2. 2.Instituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotáColombia
  3. 3.Asociación Primatológica ColombianaBogotáColombia

Personalised recommendations