Advertisement

Optical Properties of Black Carbon Aggregates

  • Chao LiuEmail author
Chapter
Part of the Springer Series in Light Scattering book series (SSLS)

Abstract

Black carbon (BC, also widely referred to as soot), a typical carbonaceous aerosol, is an important by-product of incomplete combustion of fossil fuel, biomass, biofuel, etc. (Sorensen 2001; Bond and Bergstrom 2006; Bond et al. 2013; Shrestha et al. 2010; Sharma et al. 2013). As the most absorbing aerosol of solar radiation, BC directly warms atmosphere and reduces radiation reaching the surface, and, thus, plays a critical role on global and regional weather and climate (Jacobson 2001; Menon et al. 2002; Bond and Sun 2005; Ramanathan and Carmichael 2008; Schwarz et al. 2008; Chakrabarty et al. 2009; Scarnato et al. 2013; Bond et al. 2013).

Notes

Acknowledgements

We particularly thank Drs. Daniel W. Mackowski and Michael I. Mishchenko for the MSTM code, Dr. Yu-Lin Xu for the GMM code, and Drs. Maxim A. Yurkin and Alfons G. Hoekstra for the ADDA code. We also acknowledge the contributions from Shiwen Teng, Ji Li, and Chen Zeng. This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 41505018), the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), and the Startup Foundation for Introducing Talent of NUIST (No. 2014r067).

References

  1. Adachi K, Chung SH, Buseck PR (2010) Shapes of soot aerosol particles and implications for their effects on climate. J Geophys Res 115.  https://doi.org/10.1029/2009jd012868
  2. Alexander DT, Crozier PA, Anderson JR (2008) Brown carbon spheres in East Asian outflow and their optical properties. Science 321:833–836ADSCrossRefGoogle Scholar
  3. Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148ADSCrossRefGoogle Scholar
  4. Arnott WP, Hamasha K, Moosmüller H et al (2005) Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci Tech 39:17–29ADSCrossRefGoogle Scholar
  5. Bahadur R, Praveen PS, Xu Y et al (2012) Solar absorption by elemental and brown carbon determined from spectral observations. Proc Natl Acad Sci USA 109:17366–17371ADSCrossRefGoogle Scholar
  6. Bambha RP, Michelsen HA (2015) Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J Aerosol Sci 88:159–181ADSCrossRefGoogle Scholar
  7. Bergstrom RW, Russell PB, Hignett P (2002) Wavelength dependence of the absorption of black carbon particles: predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. J Atmos Sci 59:567–577ADSCrossRefGoogle Scholar
  8. Bergstrom RW, Pilewskie P, Schmid B et al (2003) Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000. J Geophys Res 108.  https://doi.org/10.1029/2002jd002435CrossRefGoogle Scholar
  9. Bescond A, Yon J, Girasole T et al (2013) Numerical investigation of the possibility to determine the primary particle size of fractal aggregates by measuring light depolarization. J Quant Spectrosc Radiat 126:130–139ADSCrossRefGoogle Scholar
  10. Bescond A, Yon J, Ouf FX et al (2014) Automated determination of aggregate primary particle size distribution by TEM image analysis: application to soot. Aerosol Sci Tech 48:831–841ADSCrossRefGoogle Scholar
  11. Bibi S, Alam K, Chishtie F et al (2017) Observations of black carbon aerosols characteristics over an urban environment: radiative forcing and related implications. Sci Total Environ 603–604:319–329ADSCrossRefGoogle Scholar
  12. Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  13. Bond TC (2001) Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys Res Lett 28:4075–4078ADSCrossRefGoogle Scholar
  14. Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Tech 40:27–67ADSCrossRefGoogle Scholar
  15. Bond TC, Sun H (2005) Can reducing black carbon emissions counteract global warming? Environ Sci Tech 39:5921–5926CrossRefGoogle Scholar
  16. Bond TC, Covert DS, Kramlich JC et al (2002) Primary particle emissions from residential coal burning: optical properties and size distribution. J Geophys Res 107.  https://doi.org/10.1029/2001jd000571CrossRefGoogle Scholar
  17. Bond TC, Habib G, Bergstrom RW (2006) Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res 111.  https://doi.org/10.1029/2006jd007315
  18. Bond TC, Bhardwaj E, Dong R et al (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycle 21.  https://doi.org/10.1029/2006gb002840CrossRefGoogle Scholar
  19. Bond TC, Zarzycki C, Flanner MG et al (2011) Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse. Atmos Chem Phys 11:1505–1525ADSCrossRefGoogle Scholar
  20. Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118:5380–5552Google Scholar
  21. Brasil AM, Farias TL, Carvalho MG (1999) A recipe for image characterization of fractal-like aggregates. J Aerosol Sci 30:1379–1389ADSCrossRefGoogle Scholar
  22. Brasil AM, Farias TL, Carvalho MG (2000) Evaluation of the fractal properties of cluster-cluster aggregates. Aerosol Sci Tech 33:440–454ADSCrossRefGoogle Scholar
  23. Burr DW, Daun KJ, Thomson KA et al (2012) Optimization of measurement angles for soot aggregate sizing by elastic light scattering, through design-of-experiment theory. J Quant Spectrosc Radiat 113:355–365ADSCrossRefGoogle Scholar
  24. Cai J, Lu N, Sorensen CM (1993) Comparison of size and morphology of soot aggregates as determined by light scattering and electron microscope analysis. Langmuir 9:2861–2867CrossRefGoogle Scholar
  25. Cappa CD, Lack DA, Covert DS et al (2008) Bias in Filter-based aerosol light absorption measurements due to organic aerosol loading: evidence from ambient measurements. Aerosol Sci Tech 42:1033–1041ADSCrossRefGoogle Scholar
  26. Cappa CD, Onasch TB, Massoli P et al (2012) Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337:1078–1081ADSCrossRefGoogle Scholar
  27. Chakrabarty RK, Moosmüller H, Garro MA et al (2006) Emissions from the laboratory combustion of wildland fuels: particle morphology and size. J Geophys Res 111:1135–1153.  https://doi.org/10.1029/2005JD006659CrossRefGoogle Scholar
  28. Chakrabarty RK, Moosmüller H, Arnott WP et al (2007) Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment. Appl Opt 46:6990–7006ADSCrossRefGoogle Scholar
  29. Chakrabarty RK, Moosmüller H, Arnott WP et al (2009) Low fractal dimension cluster-dilute soot aggregates from a premixed flame. Phys Rev Lett 102:235504ADSCrossRefGoogle Scholar
  30. Chakrabarty RK, Arnold IJ, Francisco DM et al (2013) Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals. J Quant Spectrosc Radiat 122:25–30ADSCrossRefGoogle Scholar
  31. Chakrabarty RK, Beres ND, Moosmüller H et al (2014) Corrigendum: soot super aggregates from flaming wildfires and their direct radiative forcing. Sci Rep 4:5508CrossRefGoogle Scholar
  32. Chang H, Charalampopoulos TT (1990) Determination of the wavelength dependence of refractive indices of flame soot. Proc R Soc A 430:577–591ADSCrossRefGoogle Scholar
  33. Charalampopoulos TT, Shu G (2002) Effects of polydispersity of chainlike aggregates on light scattering properties and data inversion. Appl Opt 41:723–733ADSCrossRefGoogle Scholar
  34. Chen C, Fan X, Shaltout T et al (2016) An unexpected restructuring of combustion soot aggregates by subnanometer coatings of polycyclic aromatic hydrocarbons. Geophys Res Lett 43:11080–11088ADSCrossRefGoogle Scholar
  35. Cheng T, Wu Y, Chen H (2014) Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status. Opt Express 22:15904–15917ADSCrossRefGoogle Scholar
  36. China S, Mazzoleni C, Gorkowski K et al (2013) Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat Commun 4:2122CrossRefGoogle Scholar
  37. Chung CE, Ramanathan V, Decremer D (2012a) Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci USA 109:11624–11629ADSCrossRefGoogle Scholar
  38. Chung CE, Lee K, Müller D (2012b) Effect of internal mixture on black carbon radiative forcing. Tellus B 64:1–13CrossRefGoogle Scholar
  39. Conant WC, Nenes A, Seinfeld JH (2002) Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended Köhler theory. J Geophys Res 107.  https://doi.org/10.1029/2002jd002094CrossRefGoogle Scholar
  40. Coz E, Leck C (2011) Morphology and state of mixture of atmospheric soot aggregates during the winter season over Southern Asia—a quantitative approach. Tellus B 63:107–116ADSCrossRefGoogle Scholar
  41. D’Almeida GA, Koepke P, Shettle EP (1991) Atmospheric aerosols: global climatology and radiative characteristics. J Med Microbiol 54:55–61Google Scholar
  42. Dalzell WH, Sarofim AF (1969) Optical constants of soot and their application to heat-flux calculations. J Heat Trans 91:100–104CrossRefGoogle Scholar
  43. Dankers S, Leipertz A (2004) Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements. Appl Opt 43:3726–3731ADSCrossRefGoogle Scholar
  44. Dlugach JM, Mishchenko MI (2015) Scattering properties of heterogeneous mineral particles with absorbing inclusions. J Quant Spectrosc Radiat 162:89–94ADSCrossRefGoogle Scholar
  45. Dobbins RA, Megaridis CM (1991) Absorption and scattering of light by polydisperse aggregates. Appl Opt 30:4747–4754ADSCrossRefGoogle Scholar
  46. Doner N, Liu F (2017) Impact of morphology on the radiative properties of fractal soot aggregates. J Quant Spectrosc Radiat 187:10–19ADSCrossRefGoogle Scholar
  47. Dong J, Zhao JM, Liu L (2015) Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate. J Quant Spectrosc Radiat 165:43–55ADSCrossRefGoogle Scholar
  48. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am 11:1491–1499ADSCrossRefGoogle Scholar
  49. Dukhin AS, Fluck D, Goetz PJ et al (2007) Characterization of fractal particles using acoustics, electroacoustics, light scattering, image analysis, and conductivity. Langmuir 23:5338–5351CrossRefGoogle Scholar
  50. Eggersdorfer ML, Pratsinis SE (2012) The structure of agglomerates consisting of polydisperse particles. Aerosol Sci Tech 46:347–353ADSCrossRefGoogle Scholar
  51. Farias TL, Köylü ÜÖ, Carvalho MG (1996a) Effects of polydispersity of aggregates and primary particles on radiative properties of simulated soot. J Quant Spectrosc Radiat 55:357–371ADSCrossRefGoogle Scholar
  52. Farias TL, Köylü ÜÖ, Carvalho MG (1996b) Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Appl Opt 35:6560–6567ADSCrossRefGoogle Scholar
  53. Filippov AV, Zurita M, Rosner DE (2000) Fractal-like aggregates: relation between morphology and physical properties. J Colloid Interface Sci 229:261–273ADSCrossRefGoogle Scholar
  54. Freney EJ, Adachi K, Buseck PR (2010) Internally mixed atmospheric aerosol particles: hygroscopic growth and light scattering. J Geophys Res 115.  https://doi.org/10.1029/2009jd013558
  55. Fuller KA, Malm WC, Kreidenweis SM (1999) Effects of mixing on extinction by carbonaceous particles. J Geophys Res 104:15941–15954ADSCrossRefGoogle Scholar
  56. Ganguly D, Jayaraman A, Gadhavi H et al (2005) Features in wavelength dependence of aerosol absorption observed over central India. Geophys Res Lett 32.  https://doi.org/10.1029/2005gl023023
  57. Gao RS, Schwarz JP, Kelly KK et al (2007) A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci Tech 41:125–135ADSCrossRefGoogle Scholar
  58. Gwaze P, Schmid O, Annegarn HJ et al (2006) Comparison of three methods of fractal analysis applied to soot aggregates from wood combustion. J Aerosol Sci 37:820–838ADSCrossRefGoogle Scholar
  59. Gyawali M, Arnott WP, Zaveri RA et al (2012) Photoacoustic optical properties at UV, VIS, and near IR wavelength for laboratory generated and winder time ambient unban aerosols. Atmos Chem Phys 12:2587–2601ADSCrossRefGoogle Scholar
  60. Hanel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19:73–188ADSCrossRefGoogle Scholar
  61. He C, Li Q, Liou KN et al (2016) Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget. Atmos Chem Phys 16:3077–3098ADSCrossRefGoogle Scholar
  62. He C, Liou KN, Takano Y et al (2018) Impact of grain shape and multiple black carbon internal mixing on snow albedo: parameterization and radiative effect analysis. J Geophys Res 123.  https://doi.org/10.1002/2017jd027752ADSGoogle Scholar
  63. Herd CR, McDonald GC, Hess WM (1992) Morphology of carbon-black aggregates: fractal versus euclidean geometry. Rubber Chem Technol 65:107–129CrossRefGoogle Scholar
  64. Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. B Am Meteorol Soc 79:831–844CrossRefGoogle Scholar
  65. IPCC (2013) Climate change 2013: the physical science basis. Cambridge University PressGoogle Scholar
  66. Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697ADSCrossRefGoogle Scholar
  67. Jullien R, Kolb M (1984) Hierarchical model for chemically limited cluster-cluster aggregation. J Phys A 17:639–643ADSCrossRefGoogle Scholar
  68. Kahnert FM (2003) Numerical methods in electromagnetic scattering theory. J Quant Spectrosc Radiat 79–80:775–824ADSCrossRefGoogle Scholar
  69. Kahnert M, Devasthale A (2011) Black carbon fractal morphology and short-wave radiative impact: a modelling study. Atmos Chem Phys 11:11745–11759ADSCrossRefGoogle Scholar
  70. Kahnert M, Nousiainen T, Lindqvist H et al (2012) Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations. Opt Express 20:10042–10058ADSCrossRefGoogle Scholar
  71. Kamimoto T, Shimono M, Kase M (2007) Dynamic measurements of soot aggregate size in diesel exhaust by a light scattering method. J Phys: Conf Ser 85:65–70Google Scholar
  72. Kirchstetter TW, Novakov T (2007) Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos Environ 41:1874–1888ADSCrossRefGoogle Scholar
  73. Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res 109.  https://doi.org/10.1029/2004jd004999CrossRefGoogle Scholar
  74. Koch D, Del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696ADSCrossRefGoogle Scholar
  75. Kolokolova L, Kimura H, Ziegler K et al (2006) Lighter-scattering properties of random-oriented aggregates: do they represent the properties of an ensemble aggregates? J Quant Spectrosc Radiat 100:199–206ADSCrossRefGoogle Scholar
  76. Köylü ÜÖ, Faeth GM (1992) Structure of overfire soot in buoyant turbulent-diffusion flames at long residence times. Combust Flame 89:140–156CrossRefGoogle Scholar
  77. Köylü ÜÖ, Faeth GM (1994) Optical properties of soot in buoyant laminar diffusion flames. J Heat Trans 116:971–979CrossRefGoogle Scholar
  78. Krekov GM (1993) Models of atmospheric aerosols. Aerosol effects on climate 9–72Google Scholar
  79. Lack DA, Cappa CD (2010) Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys 10:4207–4220ADSCrossRefGoogle Scholar
  80. Lack DA, Langridge JM (2013) On the attribution of black carbon and brown carbon light absorption using the Angstrom exponent. Atmos Chem Phys 13:10535–10543ADSCrossRefGoogle Scholar
  81. Lawless PA, Rodes CE, Ensor DS (2004) Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. Atmos Environ 38:3373–3383ADSCrossRefGoogle Scholar
  82. Lee KW (1983) Change of particle size distribution during Brownian coagulation. J Colloid Interface Sci 92:315–325ADSCrossRefGoogle Scholar
  83. Lehre T, Jungfleisch B, Suntz R et al (2003) Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements. Appl Opt 42:2021–2030ADSCrossRefGoogle Scholar
  84. Lesins G, Chylek P, Lohmann U (2002) A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J Geophys Res 107.  https://doi.org/10.1029/2001jd00973
  85. Li J, Anderson JR, Buseck PR (2003) TEM study of aerosol particles from clean and polluted marine boundary layers over the North Atlantic. J Geophys Res 108.  https://doi.org/10.1029/2002jd002106
  86. Li H, Liu C, Bi L et al (2010) Numerical accuracy of “equivalent” spherical approximations for computing ensemble-averaged scattering properties of fractal soot aggregates. J Quant Spectrosc Radiat 111:2127–2132ADSCrossRefGoogle Scholar
  87. Li J, Liu C, Yin Y et al (2016) Numerical investigation on the Ångström exponent of black carbon aerosol. J Geophys Res 121:3506–3518Google Scholar
  88. Liou KN (2002) An introduction to atmospheric radiationGoogle Scholar
  89. Liou KN, Takano Y, Yang P (2011) Light absorption and scattering by aggregates: application to black carbon and snow grains. J Quant Spectrosc Radiat 112:1581–1594ADSCrossRefGoogle Scholar
  90. Liu QH (1997) The PSTD algorithm: a time-domain method requiring only two cells per wavelength. Microw Opt Tech Lett 15:158–165CrossRefGoogle Scholar
  91. Liu L, Mishchenko MI (2005) Effects of aggregation on scattering and radiative properties of soot aerosols. J Geophys Res 110.  https://doi.org/10.1029/2004jd005649
  92. Liu L, Mishchenko MI (2007) Scattering and radiative properties of complex soot and soot-containing aggregate particles. J Quant Spectrosc Radiat 106:262–273ADSCrossRefGoogle Scholar
  93. Liu F, Smallwood GJ (2010) Radiative properties of numerically generated fractal soot aggregates: the importance of configuration averaging. J Heat Trans 132:207–214Google Scholar
  94. Liu F, Smallwood GJ (2011) The effect of particle aggregation on the absorption and emission properties of mono- and poly-disperse soot aggregates. Appl Phys B 104:343–355ADSCrossRefGoogle Scholar
  95. Liu F, Stagg BJ, Snelling DR et al (2006) Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int J Heat Mass Transfer 49:777–788CrossRefGoogle Scholar
  96. Liu L, Mishchenko MI, Arnott WP (2008) A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J Quant Spectrosc Radiat 109:2656–2663ADSCrossRefGoogle Scholar
  97. Liu C, Panetta RL, Yang P (2012a) Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J Quant Spectrosc Radiat 113:1728–1740ADSCrossRefGoogle Scholar
  98. Liu C, Panetta RL, Yang P (2012b) The influence of water coating on the optical scattering properites of fractal soot aggregates. Aerosol Sci Tech 46:31–43ADSCrossRefGoogle Scholar
  99. Liu D, Allan J, Whitehead J et al (2013) Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos Chem Phys 13:2015–2029ADSCrossRefGoogle Scholar
  100. Liu C, Yin Y, Hu F et al (2015a) The effects of monomer size distribution on the radiative properties of black carbon aggregates. Aerosol Sei Tech 49:928–940ADSCrossRefGoogle Scholar
  101. Liu D, Taylor JW, Young DE et al (2015b) The effect of complex black carbon microphysics on the determination of the optical properties of brown carbon. Geophys Res Lett 42:613–619ADSCrossRefGoogle Scholar
  102. Liu C, Chung CE, Zhang F et al (2016a) The colors of biomass burning aerosols in the atmosphere. Sci Rep 6:28267ADSCrossRefGoogle Scholar
  103. Liu F, Yon J, Bescond A (2016b) On the radiative properties of soot aggregates. Part 2: Effects of coating. J Quant Spectrosc Radiat 172:134–145ADSCrossRefGoogle Scholar
  104. Liu C, Li J, Yin Y et al (2017a) Optical properties of black carbon aggregates with non-absorptive coating. J Quant Spectrosc Radiat 187:443–452ADSCrossRefGoogle Scholar
  105. Liu D, Whitehead J, Alfarra MR et al (2017b) Black carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat Geosci 10:184–188ADSCrossRefGoogle Scholar
  106. Liu C, Teng S, Zhu Y, et al (2018) Performance of discretize dipole approximation for optical property simulations of black carbon aggregates. J Quant Spectrosc Radiat 221:98–109Google Scholar
  107. Liu C, Xu X, Yin Y, et al (2019) Black carbon aggregates: an optical property database. J Quant Spectrosc Radiat 222–223:170–179Google Scholar
  108. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737ADSCrossRefGoogle Scholar
  109. Lu Z, Streets DG, Winijkul E et al (2015) Light absorption properties and radiative effects of primary organic aerosol emissions. Environ Sci Tech 49:4868–4877CrossRefGoogle Scholar
  110. Mackowski DW (1994) Calculation of total cross sections of multiple sphere cluster. J Opt Soc Am A 11:2851–2861ADSCrossRefGoogle Scholar
  111. Mackowski DW (2006) A simplified model to predict the effects of aggregation on the absorption properties of soot particles. J Quant Spectrosc Radiat 100:237–249ADSCrossRefGoogle Scholar
  112. Mackowski DW (2014) A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J Quant Spectrosc Radiat 133:264–270ADSCrossRefGoogle Scholar
  113. Mackowski DW, Mishchenko MI (1996) Calculation of the T-matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A 13:2266–2278ADSCrossRefGoogle Scholar
  114. Mackowski DW, Mishchenko MI (2011) A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J Quant Spectrosc Radiat 112:2182–2192ADSCrossRefGoogle Scholar
  115. Martins JV, Artaxo P, Liousse C et al (1998) Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J Geophys Res 103:32041–32050ADSCrossRefGoogle Scholar
  116. Menon S, Hansen J, Nazarenko L et al (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253ADSCrossRefGoogle Scholar
  117. Mie G (1908) Beitrge zur optik trber medien, speziell kolloidaler metallsungen. Ann Phys 25:377–445zbMATHCrossRefGoogle Scholar
  118. Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press, Cambridge, UKGoogle Scholar
  119. Mishchenko MI, Geogdzhayev IV, Cairns B et al (2007) Past, present, and future of global aerosol climatologies derived from satellite observations: a perspective. J Quant Spectrosc Radiat 106:325–347ADSCrossRefGoogle Scholar
  120. Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc Natl Acad Sci USA 106:11872–11877ADSCrossRefGoogle Scholar
  121. Moosmüller H, Arnott WP (2009) Particle optics in the Rayleigh regime. J Air Waste Manag 59:1028–1031CrossRefGoogle Scholar
  122. Moosmüller H, Chakrabarty RK, Arnott WP (2009) Aerosol light absorption and its measurement: a review. J Quant Spectrosc Radiat 110:844–878ADSCrossRefGoogle Scholar
  123. Moteki N (2016) Discrete dipole approximation for black carbon-containing aerosols in arbitrary mixing state: a hybrid discretization scheme. J Quant Spectrosc Radiat 178:306–314ADSCrossRefGoogle Scholar
  124. Moteki N, Kondo Y, Nakamura SI (2010) Method to measure refractive indices of small nonspherical particles: application to black carbon particles. J Aerosol Sci 41:513–521ADSCrossRefGoogle Scholar
  125. Oh C, Sorensen CM (1998) Structure factor of diffusion-limited aggregation clusters: local structure and non-self-similarity. Phys Rev E 57:784–790ADSCrossRefGoogle Scholar
  126. Painter TH, Bryant AC, Skiles MK (2012) Radiative forcing by light absorbing impurities in snow from modis surface reflectance data. Geophys Res Lett 39:17502ADSCrossRefGoogle Scholar
  127. Peng J, Hu M, Guo S et al (2016) Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci USA 113:4266–4271ADSCrossRefGoogle Scholar
  128. Pirjola L, Niemi JV, Saarikoski S et al (2017) Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmos Environ 158:60–75ADSCrossRefGoogle Scholar
  129. Posfai M, Gelencser A, Simonics R et al (2004) Atmospheric tar balls: particles from biomass and biofuel burning. J Geophys Res 109.  https://doi.org/10.1029/2003jd004169CrossRefGoogle Scholar
  130. Querry MR (1987) Optical constants of minerals and other materials from the millimeter to the ultraviolet, CRDEC-CR-88009. Aberdeen Proving Ground, MarylandGoogle Scholar
  131. Radney JG, You R, Ma X et al (2014) Dependence of soot optical properties on particle morphology: measurements and model comparisons. Environ Sci Tech 48:3169–3176CrossRefGoogle Scholar
  132. Ramanathan V, Carmichael G (2008) Global and reginal climate change due to black carbon. Nat Geosci 1:221–227ADSCrossRefGoogle Scholar
  133. Reddington CL, McMeeking G, Mann GW et al (2013) The mass and number size distribution of black carbon aerosol over Europe. Atmos Chem Phys 13:4917–4939ADSCrossRefGoogle Scholar
  134. Riemer N, West M, Zaveri R et al (2010) Estimating black carbon aging time-scales with a particle-resolved aerosol model. J Aerosol Sci 41:143–158ADSCrossRefGoogle Scholar
  135. Russell PB, Bergstrom RW, Shinozuka Y et al (2010) Absorption Ångström exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10:1155–1169ADSCrossRefGoogle Scholar
  136. Sato M, Hansen J, Koch D et al (2003) Global atmospheric black carbon inferred from aeronet. Proc Natl Acad Sci USA 100:6319–6324ADSCrossRefGoogle Scholar
  137. Scarnato BV, Vahidinia S, Richard DT et al (2013) Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos Chem Phys 13:5089–5101ADSCrossRefGoogle Scholar
  138. Schmid O, Artaxo P et al (2006) Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmos Chem Phys 6:3443–3462ADSCrossRefGoogle Scholar
  139. Schnaiter M, Linke C, Möhler O et al (2005) Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res 110.  https://doi.org/10.1029/2005jd006046
  140. Schwarz JP, Gao RS, Spackman JR et al (2008) Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys Res Lett 35:L13810ADSCrossRefGoogle Scholar
  141. Sharma S, Ishizawa M, Chan D et al (2013) 16-year simulation of arctic black carbon: transport, source contribution, and sensitivity analysis on deposition. J Geophys Res 118:943–964CrossRefGoogle Scholar
  142. Shiraiwa M, Kondo Y, Iwamoto T et al (2010) Amplification of light absorption of black carbon by organic coating. Aerosol Sci Tech 44:46–54ADSCrossRefGoogle Scholar
  143. Shrestha G, Traina SJ, Swanston CW (2010) Black carbon’s properties and role in the environment: a comprehensive review. Sustainability 2:294–320CrossRefGoogle Scholar
  144. Skorupski K, Mroczka J (2014) Effect of the necking phenomenon on the optical properties of soot particles. J Quant Spectrosc Radiat 141:40–48ADSCrossRefGoogle Scholar
  145. Smith AJA, Peters DM, Mcpheat R et al (2015) Measuring black carbon spectral extinction in the visible and infrared. J Geophys Res 120:9670–9683Google Scholar
  146. Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Tech 35:648–687ADSCrossRefGoogle Scholar
  147. Sorensen CM (2011) The mobility of fractal aggregates: a review. Aerosol Sci Tech 45:765–779ADSCrossRefGoogle Scholar
  148. Sorensen CM, Roberts GC (1997) The prefactor of fractal aggregates. J Colloid Interface Sci 186:447–452ADSCrossRefGoogle Scholar
  149. Sorensen CM, Cai J, Lu N (1992) Test of static structure factors for describing light scattering from fractal soot aggregates. Langmuir 8:2064–2069CrossRefGoogle Scholar
  150. Sorensen CM, Yon J, Liu F et al (2018) Light scattering and absorption by fractal aggregate including soot. J Quant Spectrosc Radiat 217:459–473ADSCrossRefGoogle Scholar
  151. Stagg BJ, Charalampopoulos TT (1993) Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25–600 °C. Combust Flame 94:381–396CrossRefGoogle Scholar
  152. Subramanian R, Roden CA et al (2007) Yellow beads and missing particles: trouble ahead for filter-based absorption measurements. Aerosol Sci Tech 41:630–637ADSCrossRefGoogle Scholar
  153. Tumolva L, Park JY, Kim JS et al (2010) Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using the TEM/EDS. Aerosol Sci Tech 44:202–215ADSCrossRefGoogle Scholar
  154. Van-Hulle P, Weill ME, Talbaut M et al (2002) Comparison of numerical studies characterizing optical properties of soot aggregates for improved EXSCA measurements. Part Part Syst Char 19:47–57CrossRefGoogle Scholar
  155. Wang QY, Huang RJ, Cao JJ et al (2015) Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: the source, mixing state and optical properties. Atmos Chem Phys 15:13059–13069ADSCrossRefGoogle Scholar
  156. Wang Y, Liu F, He C et al (2017) Fractal dimensions and mixing structures of soot particles during atmospheric processing. Environ Sci Tech Lett 4:487–493CrossRefGoogle Scholar
  157. Witter TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403ADSCrossRefGoogle Scholar
  158. Wu Y, Cheng T, Zheng L et al (2014) A Study of optical properties of soot aggregates composed of poly-disperse monomers using the superposition T-matrix method. Aerosol Sci Tech 49:941–949ADSCrossRefGoogle Scholar
  159. Wu Y, Cheng T, Zheng L et al (2016) Black carbon radiative forcing at TOA decreased during aging. Sci Rep 6:38592ADSCrossRefGoogle Scholar
  160. Xu YL (1995) Electromagnetic scattering by an aggregate of spheres. Appl Opt 34:4573–4588ADSCrossRefGoogle Scholar
  161. Xu YL, Gustafson BÅS (2001) A generalized multiparticle Mie-solution: further experimental verification. J Quant Spectrosc Radiat 70:395–419ADSCrossRefGoogle Scholar
  162. Xu YL, Khlebtsov NG (2003) Orientation-averaged radiative properties of an arbitrary configuration of scatterers. J Quant Spectrosc Radiat 79:1121–1137ADSCrossRefGoogle Scholar
  163. Yang P, Liou KN (1996) Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J Opt Soc Am A 13:2072–2085ADSCrossRefGoogle Scholar
  164. Yon J, Bescond A, Liu F (2015) On the radiative properties of soot aggregates. Part 1: Necking and overlapping. J Quant Spectrosc Radiat 162:197–206ADSCrossRefGoogle Scholar
  165. Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat 106:558–589ADSCrossRefGoogle Scholar
  166. Yurkin MA, Hoekstra AG (2011) The discrete-dipole-approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat 112:2234–2247ADSCrossRefGoogle Scholar
  167. Zhang R, Khalizov AF, Pagels J et al (2008) Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc Natl Acad Sci USA 105:10291–10296ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Atmospheric PhysicsNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations