Advertisement

Aerosol Layer Height over Water via Oxygen A-Band Observations from Space: A Tutorial

  • Anthony B. Davis
  • Olga V. KalashnikovaEmail author
Chapter
Part of the Springer Series in Light Scattering book series (SSLS)

Abstract

Aerosols are a highly problematic area in climate science for several reasons. On the one hand, they are at least partially anthropogenic, originating from industrial facilities spewing pollution as well as agricultural activity, seasonal biomass burning, land-use change, and even wood-stove cooking in densely populated regions. On the other hand, aerosols interact in very poorly understood ways with clouds and hence, indirectly, the climate system as a whole (Boucher and Randall 2014).

Notes

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). We acknowledge support from the NASA Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) for Earth Science, managed by Dr. Paula Bontempi. We also thank Laurent C.-Labonnote, Guillaume Merlin, Oleg Dubovik, Alex Kokhanovsky, Kirk Knobelspiesse, Lorraine Remer, Dave Diner, Mike Garay, Vijay Natraj, Suniti Sanghavi, Eugene Ustinov, and Feng Xu for fruitful discussions about OE theory and passive atmospheric profiling of aerosols and clouds using the O\(_2\) A-band, in general or in connection with the PACE mission, as well as with the proposed MAIA investigation.

References

  1. Aides A, Schechner YY, Holodovsky V, Garay MJ, Davis AB (2013) Multi sky-view 3D aerosol distribution recovery. Opt Express 21(22):25820–25833ADSCrossRefGoogle Scholar
  2. Bevington PR, Robinson DK (1992) Data reduction and error analysis for the physical sciences. WCB McGraw-Hill, New York (NY)Google Scholar
  3. Boucher O, Randall D (2014) Chapter 7: clouds and aerosols. In: Cubasch U, Wuebbles D (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge (UK)Google Scholar
  4. Chandrasekhar, S (1950) Radiative Transfer. Oxford University Press, Oxford (UK). [reprinted by Dover Publications, New York (NY), 1960]Google Scholar
  5. Corradini S, Cervino (2006)Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering atmosphere. Test case: SCIAMACHY nadir simulated measurements. J Quant Spectrosc Radiat Transfer 97(3):354–380ADSCrossRefGoogle Scholar
  6. Davis AB, Kalashnikova OV, Diner DJ (2018) Aerosol layer height over water from the oxygen a-band: mono-angle spectroscopy and/or multi-angle radiometry. Remote Sens (in preparation)Google Scholar
  7. Davis AB, Knyazikhin Y (2005) Chapter 3: A primer in 3D radiative transfer. In: Marshak A, Davis AB (eds) 3D radiative transfer in cloudy atmospheres. Springer, Heidelberg (Germany), pp 153–242CrossRefGoogle Scholar
  8. Davis AB, Polonsky IN, Marshak A (2009) Space-time Green functions for diffusive radiation transport, in application to active and passive cloud probing. In: Kokhanovsky AA (ed) Light scattering reviews, vol 4. Springer-Praxis, Heidelberg (Germany), pp 169–292CrossRefGoogle Scholar
  9. Desmons M, Ferlay N, Parol F, Mcharek L, Vanbauce C (2013) Improved information about the vertical location and extent of monolayer clouds from POLDER3 measurements in the oxygen A-band. Atmos Meas Tech 6(8):2221–2238CrossRefGoogle Scholar
  10. Diner DJ, Beckert JC, Reilly TH, Bruegge CJ, Conel JE, Kahn RA, Martonchik JV, Ackerman TP, Davies R, Gerstl SAW, Gordon HR, Muller J-P, Myneni RB, Sellers PJ, Pinty B, Verstraete MM (1998) Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans Geosci Remote Sens 36(4):1072–1087ADSCrossRefGoogle Scholar
  11. Diner DJ, Boland SW, Brauer M, Bruegge C, Burke KA, Chipman R, Di Girolamo L, Garay MJ, Hasheminassab S, Hyer E, Jerrett M, Jovanovic V, Kalashnikova OV, Liu Y, Lyapustin AI, Martin RV, Nastan A, Ostro BD, Ritz B, Schwartz J, Wang J, Xu F (2018) Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA. J Appl Remote Sens 12:042603CrossRefGoogle Scholar
  12. Ding S, Wang J, Xu X (2016) Polarimetric remote sensing in oxygen A and B bands: Sensitivity study and information content analysis for vertical profile of aerosols. Atmos Meas Tech 9(5):2077–2092CrossRefGoogle Scholar
  13. Dubuisson P, Frouin R, Dessailly D, Duforêt L, Léon J-F, Voss K, Antoine D (2009) Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O\(_2\) A-band. Remote Sens Environ 113(9):1899–1911ADSCrossRefGoogle Scholar
  14. Duforêt L, Frouin R, Dubuisson P (2007) Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing. Appl Opt 46(7):1107–1119ADSCrossRefGoogle Scholar
  15. Evans KF, Marshak A (2005) Numerical methods. In: Marshak A, Davis A (eds) 3D radiative transfer in cloudy atmospheres, chapter 4. Springer, Heidelberg (Germany), pp 243–281CrossRefGoogle Scholar
  16. Ferlay N, Thieuleux F, Cornet C, Davis AB, Dubuisson P, Ducos F, Parol F, Riédi J, Vanbauce C (2010) Toward new inferences about cloud structures from multidirectional measurements in the oxygen A-band: middle-of-cloud pressure and cloud geometrical thickness from POLDER-3/PARASOL. J Appl Meteorol Climatol 49(12):2492–2507ADSCrossRefGoogle Scholar
  17. Flower VJB, Kahn RA (2018) Karymsky volcano eruptive plume properties based on MISR multi-angle imagery and the volcanological implications. Atmos Chem Phys 18(6):3903–3918ADSCrossRefGoogle Scholar
  18. Frankenberg C, Hasekamp O, O’Dell C, Sanghavi S, Butz A, Worden J (2012) Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals. Atmos Meas Tech 5(7):1809–1821CrossRefGoogle Scholar
  19. Gabella M, Kisselev V, Perona G (1999) Retrieval of aerosol profile variations from reflected radiation in the oxygen absorption A band. Appl Opt 38(15):3190–3195ADSCrossRefGoogle Scholar
  20. Garay MJ, Davis AB, Diner DJ (2016) Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument. Geophys Res Lett 43(24):12590–12596CrossRefGoogle Scholar
  21. Hollstein A, Fischer J (2014) Retrieving aerosol height from the oxygen A band: a fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity. Atmos Meas Techn 7(5):1429–1441CrossRefGoogle Scholar
  22. Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, Holben BN (2010) Multiangle imaging spectroradiometer global aerosol product assessment by comparison with the aerosol robotic network. J Geophys Res Atmos 115(D23):D23209ADSCrossRefGoogle Scholar
  23. Kalashnikova OV, Garay MJ, Davis AB, Diner DJ, Martonchik JV (2011a) Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: quantifying measurement uncertainties. J Quant Spectrosc Radiat Transfer 112(13):2149–2163ADSCrossRefGoogle Scholar
  24. Kalashnikova OV, Garay MJ, Sokolik IN, Diner DJ, Kahn RA, Martonchik JV, Lee JN, Torres O, Yang W, Marshak A, Kassabian S, Chodas M (2011b) Capabilities and limitations of MISR aerosol products in dust-laden regions. Proc SPIE 8177:1–11Google Scholar
  25. Kokhanovsky AA, Rozanov VV (2005) Cloud bottom altitude determination from a satellite. IEEE Geosci Remote Sens Lett 2(3):280–283ADSCrossRefGoogle Scholar
  26. Kokhanovsky AA, Rozanov VV (2010) The determination of dust cloud altitudes from a satellite using hyperspectral measurements in the gaseous absorption band. Int J Remote Sens 31(10):2729–2744CrossRefGoogle Scholar
  27. Kokhanovsky AA, Davis AB, Cairns B, Dubovik O, Hasekamp OP, Sano I, Mukai S, Rozanov VV, Litvinov P, Lapyonok T, Kolomiets IS (2015) Space-based remote sensing of atmospheric aerosols: the multi-angle spectro-polarimetric frontier. Earth Sci Rev 145:85–116CrossRefGoogle Scholar
  28. Liu Y, Diner DJ (2017) Multi-angle imager for aerosols: a satellite investigation to benefit public health. Public Health Reports 132(1):14–17CrossRefGoogle Scholar
  29. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441MathSciNetCrossRefGoogle Scholar
  30. Merlin G, Riédi J, Labonnote LC, Cornet C, Davis AB, Dubuisson P, Desmons M, Ferlay N, Parol F (2016) Cloud information content analysis of multi-angular measurements in the oxygen A-band: application to 3MI and MSPI. Atmos Meas Tech 9(10):4977–4995CrossRefGoogle Scholar
  31. Min Q, Harrison LC (2004) Retrieval of atmospheric optical depth profiles from downward-looking high-resolution O\(_2\) A-band measurements: optically thin conditions. J Atmos Sci 61(20):2469–2477ADSCrossRefGoogle Scholar
  32. Mishchenko MI (2002) Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Appl Opt 41:7114–7135ADSCrossRefGoogle Scholar
  33. Moroney C, Davies R, Muller JP (2002) Operational retrieval of cloud-top heights using MISR data. IEEE Trans Geosci Remote Sens 40(7):1532–1540ADSCrossRefGoogle Scholar
  34. NASA (2017) PACE: Plankton, Aerosol, Cloud, ocean Ecosystem. https://pace.gsfc.nasa.gov
  35. National Academies of Sciences, Engineering, and Medicine (2018) Thriving on Our Changing Planet, A Decadal Strategy for Earth Observation from Space. The National Academies Press, Washington (DC).  https://doi.org/10.17226/24938
  36. Nelson DL, Chen Y, Kahn RA, Diner DJ, Mazzoni D (2008) Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. Proc SPIE 7089:1–11Google Scholar
  37. Nelson DL, Garay MJ, Kahn RA, Dunst BA (2013) Stereoscopic height and wind retrievals for aerosol plumes with the MISR INteractive eXplorer (MINX). Remote Sens 5(9):4593–4628ADSCrossRefGoogle Scholar
  38. Pelletier B, Frouin R, Dubuisson P (2008) Retrieval of the aerosol vertical distribution from atmospheric radiance. Proc. SPIE 7150:7150R1–7150R9Google Scholar
  39. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical recipes. Cambridge University Press, Cambridge (UK)zbMATHGoogle Scholar
  40. Rodgers CD (1998) Information content and optimisation of high spectral resolution remote measurements. Adv Space Res 21(3):361–367ADSCrossRefGoogle Scholar
  41. Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific, SingaporeCrossRefGoogle Scholar
  42. Rothman LS (2010) The evolution and impact of the HITRAN molecular spectroscopic database. J Quant Spectrosc Radiat Transfer 111:1565–1567ADSCrossRefGoogle Scholar
  43. Rozanov VV, Kokhanovsky AA (2004) Semianalytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from top-of-atmosphere reflectance measurements in the oxygen A band. J Geophys Res Atmos 109(D5):D05202ADSCrossRefGoogle Scholar
  44. Sanghavi S, Martonchik JV, Landgraf J, Platt U (2012) Retrieval of the optical depth and vertical distribution of particulate scatterers in the atmosphere using O\(_2\) A- and B-band SCIAMACHY observations over kanpur: a case study. Atmos Meas Tech 5(5):1099–1119CrossRefGoogle Scholar
  45. Schuessler O, Rodriguez D, Loyola G, Doicu A, Spurr R (2014) Information content in the oxygen A-band for the retrieval of macrophysical cloud parameters. IEEE Trans Geosci Remote Sens 52(6):3246–3255ADSCrossRefGoogle Scholar
  46. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423MathSciNetCrossRefGoogle Scholar
  47. Val Martin M, Logan JA, Kahn RA, Leung FY, Nelson DL, Diner DJ (2010) Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos Chem Phys 10(4):1491–1510ADSCrossRefGoogle Scholar
  48. Vaughan MA, Powell KA, Winker DM, Hostetler CA, Kuehn RE, Hunt WH, Getzewich BJ, Young SA, Liu Z, McGill MJ (2009) Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J Atmos Ocean Technol 26(10):2034–2050CrossRefGoogle Scholar
  49. Winker DM, Pelon J, Coakley JA Jr, Ackerman SA, Charlson RJ, Colarco PR, Flamant P, Fu Q, Hoff RM, Kittaka C, Kubar TL, Le Treut H, McCormick MP, Mégie G, Poole L, Powell K, Trepte C, Vaughan MA, Wielicki BA (2010) The CALIPSO mission: a global 3D view of aerosols and clouds. Bull Am Meteorol Soc 91(9):1211–1230CrossRefGoogle Scholar
  50. Wu L, Hasekamp O, van Diedenhoven B, Cairns B, Yorks JE, Chowdhary J (2016). Passive remote sensing of aerosol layer height using near-UV multiangle polarization measurements. Geophys Res Lett 43(16):8783–8790. 2016GL069848ADSCrossRefGoogle Scholar
  51. Xu X, Wang J, Wang Y, Zeng J, Torres O, Yang Y, Marshak A, Reid J, Miller S (2017) Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: first results from EPIC/DSCOVR at Lagrange-1 point. Geophys Res Lett 44(14):7544–7554ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations