Advertisement

Radiative Transfer of Light in Strongly Scattering Media

  • Boaz Ilan
  • Arnold D. Kim
Chapter
Part of the Springer Series in Light Scattering book series (SSLS)

Abstract

Radiative transfer provides a complete description of absorption, scattering, and radiation of light in a multiple scattering medium (Chandrasekhar 1960; Ishimaru 1999; Van de Hulst 2012). Consequently, radiative transfer is important for several applications such as neutron transport (Bell and Glasstone 1970; Case and Zweifel 1967; Lewis and Miller 1984), astrophysics (Peraiah 2002; Sobolev 2017), geophysics (Tsang et al. 1985; Mobley 1994; Kirk 1994; Thomas and Stamnes 2002; Kokhanovsky 2006b; Marshak and Davis 2005; Mishchenko et al. 2006; Mishchenko 2014), heat transfer (Modest 2013), biomedical optics (Welch et al. 2011; Wang and Wu 2012), and computer graphics (Jensen 2001).

Notes

Acknowledgements

A. D. Kim acknowledges support from the Air Force Office of Scientific Research (FA9550-17-1-0238).

References

  1. Aronson R (1986) \(P_{N}\) versus double-\(P_{N}\) approximations for highly anisotropic scattering. Transport Theor Stat 15(6–7):829–840Google Scholar
  2. Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reinhold Co, New YorkGoogle Scholar
  3. Bender CM, Orszag SA (2013) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer Science & Business Media, BerlinzbMATHGoogle Scholar
  4. Brinkworth B (1972) Interpretation of the Kubelka-Munk coefficients in reflection theory. Appl Opt 11(6):1434–1435ADSGoogle Scholar
  5. Case KM, Zweifel PF (1967) Linear transport theory. Addison-Wesley, ReadingzbMATHGoogle Scholar
  6. Chandrasekhar S (1960) Radiative transfer. Dover, New YorkzbMATHGoogle Scholar
  7. Courant R, Hilbert D (2008) Methods of mathematical physics, Vol. 2: differential equations. Wiley, New YorkzbMATHGoogle Scholar
  8. Dark JP, Kim AD (2017) Asymptotic theory of circular polarization memory. J Opt Soc Am A 34(9):1642–1650ADSGoogle Scholar
  9. Edström P (2007) Examination of the revised Kubleka-Munk theory: considerations of modeling strategies. J Opt Soc Am A 24(2):548–556ADSGoogle Scholar
  10. Gao H, Zhao H (2009) A fast-forward solver of radiative transfer equation. Transp Theory Stat Phys 38(3):149–192ADSMathSciNetzbMATHGoogle Scholar
  11. Gate L (1974) Comparison of the photon diffusion model and Kubleka-Munk equation with the exact solution of the radiative transport equation. Appl Opt 13(2):236–238ADSGoogle Scholar
  12. Habetler G, Matkowsky B (1975) Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation. J Math Phys 16(4):846–854ADSMathSciNetzbMATHGoogle Scholar
  13. Hinch EJ (1991) Perturbation methods. Cambridge University Press, CambridgezbMATHGoogle Scholar
  14. Ishimaru A (1999) Wave propagation and scattering in random media. Wiley-IEEE-Press, New YorkzbMATHGoogle Scholar
  15. Jensen HW (2001) Realistic image synthesis using photon mapping. A K Peters Ltd., NatickzbMATHGoogle Scholar
  16. Keller HB (1960) On the pointwise convergence of the discrete-ordinate method. J Soc Ind Appl Math 8(4):560–567MathSciNetGoogle Scholar
  17. Kim AD (2011) Correcting the diffusion approximation at the boundary. J Opt Soc Am A 28(6):1007–1015ADSGoogle Scholar
  18. Kim AD, Keller JB (2003) Light propagation in biological tissue. J Opt Soc Am A 20(1):92–98ADSGoogle Scholar
  19. Kim AD, Moscoso M (2011) Diffusion of polarized light. Multiscale Model Simul 9(4):1624–1645MathSciNetzbMATHGoogle Scholar
  20. Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  21. Kokhanovsky A (2006a) Asymptotic radiative transfer. In: Light scattering reviews. Springer, Berlin, pp 253–289Google Scholar
  22. Kokhanovsky AA (2006b) Cloud optics. Springer, BerlinGoogle Scholar
  23. Kokhanovsky AA (2007) Physical interpretation and accuracy of the Kubelka-Munk theory. J Phys D 40(7):2210ADSGoogle Scholar
  24. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part I. J Opt Soc Am 38(5):448–457ADSMathSciNetGoogle Scholar
  25. Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 12:593–601Google Scholar
  26. Larsen EW (1999) The linear Boltzmann equation in optically thick systems with forward-peaked scattering. Prog Nucl Energy 34(4):413–423Google Scholar
  27. Larsen EW, Keller JB (1974) Asymptotic solution of neutron transport problems for small mean free paths. J Math Phys 15(1):75–81ADSMathSciNetGoogle Scholar
  28. Lehtikangas O, Tarvainen T, Kim AD (2012) Modeling boundary measurements of scattered light using the corrected diffusion approximation. Biomed Opt Express 3(3):552–571Google Scholar
  29. Lewis EE, Miller WF (1984) Computational methods of neutron transport. Wiley, New YorkzbMATHGoogle Scholar
  30. Malvagi F, Pomraning G (1991) Initial and boundary conditions for diffusive linear transport problems. J Math Phys 32(3):805–820ADSMathSciNetzbMATHGoogle Scholar
  31. Marshak A, Davis A (2005) 3D radiative transfer in cloudy atmospheres. Springer Science & Business Media, BerlinGoogle Scholar
  32. Miller PD (2006) Applied asymptotic analysis. American Mathematical Society, ProvidencezbMATHGoogle Scholar
  33. Mishchenko MI (2014) Electromagnetic scattering by particles and particle groups: an introduction. Cambridge University Press, CambridgeGoogle Scholar
  34. Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, CambridgeGoogle Scholar
  35. Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, New YorkGoogle Scholar
  36. Modest MF (2013) Radiative heat transfer. Academic Press, New YorkGoogle Scholar
  37. Molenaar R, Jaap J, Zijp JR (1999) Determination of Kubelka-Munk scattering and absorption coefficients by diffuse illumination. Appl Opt 38(10):2068–2077ADSGoogle Scholar
  38. Myrick ML, Simcock MN, Baranowski M, Brooke H, Morgan SL, McCutcheon JN (2011) The Kubelka-Munk diffuse reflectance formula revisited. Appl Spectrosc Rev 46(2):140–165ADSGoogle Scholar
  39. Neuman M, Edström P (2010) Anisotropic reflectance from turbid media. I. theory. J Opt Soc Am A 27(5):1032–1039ADSGoogle Scholar
  40. Nobbs JH (1985) Kubelka-Munk theory and the prediction of reflectance. Color Technol 15(1):66–75Google Scholar
  41. Peraiah A (2002) An introduction to radiative transfer: methods and applications in astrophysics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  42. Philips-Invernizzi B, Dupont D, Caze C (2001) Bibliographical review for reflectance of diffusing media. Opt Eng 40(6):1082–1092ADSGoogle Scholar
  43. Pomraning G, Ganapol B (1995) Asymptotically consistent reflection boundary conditions for diffusion theory. Ann Nucl Energy 22(12):787–817Google Scholar
  44. Rohde SB, Kim AD (2012) Modeling the diffuse reflectance due to a narrow beam incident on a turbid medium. J Opt Soc Am A 29(3):231–238ADSGoogle Scholar
  45. Rohde S, Kim A (2014) Convolution model of the diffuse reflectance for layered tissues. Opt Lett 39(1):154–157ADSGoogle Scholar
  46. Rohde SB, Kim AD (2017) Backscattering of continuous and pulsed beams. Multiscale Model Simul 15(4):1356–1375MathSciNetzbMATHGoogle Scholar
  47. Şahin-Biryol D, Ilan B (2014) Asymptotic solution of light transport problems in optically thick luminescent media. J Math Phys 55(6):061, 501MathSciNetzbMATHGoogle Scholar
  48. Sandoval C, Kim AD (2014) Deriving Kubelka-Munk theory from radiative transport. J Opt Soc Am A 31(3):628–636ADSGoogle Scholar
  49. Schuster A (1905) Radiation through a foggy atmosphere. Astrophys J 21:1ADSGoogle Scholar
  50. Schwarzschild K (1906) On the equilibrium of the sun’s atmosphere. Nach König Gesell Wiss Göttingen Math-Phys Klasse, 195, p 41–53 195:41–53zbMATHGoogle Scholar
  51. Sobolev VV (2017) Light scattering in planetary atmospheres: international series of monographs in natural philosophy, vol 76. Elsevier, AmsterdamGoogle Scholar
  52. Star W, Marijnissen J, Van Gemert M (1988) Light dosimetry in optical phantoms and in tissues: I. multiple flux and transport theory. Phys Med Biol 33(4):437Google Scholar
  53. Thennadil SN (2008) Relationship between the Kubleka-Munk scattering and radiative transfer coefficients. J Opt Soc Am A 25(7):1480–1485ADSGoogle Scholar
  54. Thomas GE, Stamnes K (2002) Radiative transfer in the atmosphere and ocean. Cambridge University Press, CambridgezbMATHGoogle Scholar
  55. Tsang L, Kong JA, Shin RT (1985) Theory of microwave remote sensing. Wiley-Interscience, New YorkGoogle Scholar
  56. Van de Hulst HC (2012) Multiple light scattering: tables, formulas, and applications. Elsevier, AmsterdamGoogle Scholar
  57. Vargas WE, Niklasson GA (1997) Applicability conditions of the Kubelka-Munk theory. Appl Opt 36(22):5580–5586ADSGoogle Scholar
  58. Wang LV, Hi Wu (2012) Biomedical optics: principles and imaging. Wiley, New YorkGoogle Scholar
  59. Welch AJ, Van Gemert MJ et al (2011) Optical-thermal response of laser-irradiated tissue, vol 2. Springer, BerlinGoogle Scholar
  60. Yang L, Kruse B (2004) Revised Kubelka-Munk theory. I. Theory and application. J Opt Soc Am A 21(10):1933–1941ADSGoogle Scholar
  61. Yang L, Miklavcic SJ (2005) Revised Kubelka-Munk theory III. A general theory of light propagation in scattering and absorptive media. J Opt Soc Am A 22(9):1866–1873ADSGoogle Scholar
  62. Yang L, Kruse B, Miklavcic SJ (2004) Revised Kubelka-Munk theory. II. Unified framework for homogeneous and inhomogeneous optical media. J Opt Soc Am A 21(10):1942–1952ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Applied Mathematics DepartmentUniversity of California, MercedMercedUSA

Personalised recommendations