Effectiveness of NEdT and Band 10 (8.3 μm) of ASTER/TIR on SSST Estimation

  • Kohei AraiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 887)


Effectiveness of Noise Equivalent delta Temperature (NEdT) and Band 10 (8.3 μm) of Advanced Spaceborne Thermal Emission and Reflection Radiometer/Thermal Infrared Radiometer (ASTER/TIR) on SST Estimation is confirmed with MODerate resolution atmospheric TRANsmission (MODTRAN). Also, Skin Sea Surface Temperature (SSSST) estimation accuracy of ASTER/TIR (with and without band 10 (8.3 μm)) is evaluated. Through regressive analysis, it is found that NEdT of noise is quite influence while band 10 is very effective to improve SST estimation for Tropic and Mid-Latitude Summer of atmospheric models.


Thermal infrared radiometer Sea surface temperature Regressive analysis Split window method Multi channel sea surface temperature MODTRAN 


  1. 1.
    NASA: Science and mission requirements Working Report, EOS Science Steering Committee Report, vol. I (1990)Google Scholar
  2. 2.
    Barton, I.J.: Satellite-derived sea surface temperatures: current status. J. Geophys. Res. 100, 8777–8790 (1995) and Personal correspondence at the 37th COSPAR Congress, Warsaw, Poland, July 2000Google Scholar
  3. 3.
    Scott, N.A., Chedin, A.: A fast line-by-line method for atmospheric absorption computations: the automatized atmospheric absorption atlas. J. Appl. Meteorol. 20, 802–812 (1981)CrossRefGoogle Scholar
  4. 4.
    Hollinger, J.P.: Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Remote Sens. GE-9(3) (1971)CrossRefGoogle Scholar
  5. 5.
    Cox, C., Munk, W.H.: Some problems in optical oceanography. J. Mar. Res. 14, 68–78 (1955)Google Scholar
  6. 6.
    Harris, A.R., Brown, O., Mason, M.: The effect of wind speed on sea surface temperature retrieval from space. Geophys. Res. Lett. 21(16), 1715–1718 (1994)CrossRefGoogle Scholar
  7. 7.
    Masuda, K., Takashima, T., Takayama, T.: Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 24, 313–329 (1988)CrossRefGoogle Scholar
  8. 8.
    Watte, P.D., Allen, M.R., Nightingale, T.J.: Wind speed effect on sea surface emission and reflection for along track scanning radiometer. J. Atmos. Ocean. Technol. 13, 126–141 (1996)CrossRefGoogle Scholar
  9. 9.
    McClain, E.P., Pichel, W.G., Walton, C.C.: Comparative performance of AVHRR based multi-channel sea surface temperatures. J. Geophys. Res. 90(C6), 11587–11601 (1985)CrossRefGoogle Scholar
  10. 10.
    Arai, K., Ono, A., Yamaguchi, Y.: Cross calibration between ASTER/TIR and MODIS-N. In: Proceedings of the EOS Calibration Panel Workshop, pp. 1–8 (1992) Google Scholar
  11. 11.
    Arai, K.: A method for sea surface temperature retrieval with ASTER/TIR. In: Proceedings of IGARSS 1994, pp. 253–254 (1994)Google Scholar
  12. 12.
    Kneizys, F.X. et al.: User’s guide to LOWTRAN 7, AFGL-TR-88-0137, AFGL (American Airforce Geophysical Laboratory), Hanscom, MA (1988)Google Scholar
  13. 13.
    Matsunaga, T.: Water surface temperature estimation using linear equation of observed brightness temperature of ASTERTIR. J. Jpn. Remote Sens. Soc. 16(5), 2–13 (1996)Google Scholar
  14. 14.
    Ukaoka, H., Rikawa, S.: Simultaneous estimation method of atmospheric correction parameter, ground surface temperature, spectral emissivity using thermal infrared multiple spectroscopic scanner. J. Jpn. Remote Sens. Soc. 17(2), 19–33 (1997)Google Scholar
  15. 15.
    AFGL, MODTRAN 3 users instructions, GLTR-89-0122 (1996)Google Scholar
  16. 16.
    Cox, C., Munk, W.: Measurements of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Am. 44, 938–950 (1954)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Science and EngineeringSaga UniversitySaga CityJapan

Personalised recommendations