Advertisement

Quantum Adiabatic Evolution with a Special Kind of Interpolating Paths

  • Jie Sun
  • Songfeng LuEmail author
  • Chao Gao
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 887)

Abstract

We study a special kind of interpolating paths in quantum adiabatic search algorithms. With this special kind of adiabatic paths, notably we find that even when the parameter n within it tends to infinity, the adiabatic evolution would be a failure if the initial state is orthogonal to the final target state. But superficially, it seems that the minimum gap of the quantum system happening at the end of the computation would not affect the validity of the algorithm, since each ground state of the problem Hamiltonian encodes a solution to the problem. When the beginning state has a nonzero overlap with the final state, again if the parameter n within the special interpolating paths tends to infinity, it may give ones the counterintuitive impression that the adiabatic evolution could be considerably faster than the usual simple models of adiabatic evolution, even possible with constant time complexity. However, the fact is that as in the usual case, the quadratic speedup is the quantum algorithmic performance limit for which this kind of interpolating functions can provide for the adiabatic evolution. We also expose other easily made mistakes which may lead to draw the wrong conclusions about the validity of the adiabatic search algorithms.

Keywords

Quantum computing Adiabatic evolution Interpolating paths 

Notes

Acknowledgment

This work are supported by the Natural Science Foundation of China under Grant No. 61402188, the Natural Science Foundation of Hubei Province of China under Grant No. 2016CFB541, the Applied Basic Research Program of Wuhan Science and Technology Bureau of China under Grant No. 2016010101010003 and the Science and Technology Program of Shenzhen of China under Grant No. JCYJ20170307160458368.

References

  1. 1.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454(1969), 339–354 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 439(1907), 553–558 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Proceedings, pp. 124–134. IEEE (1994)Google Scholar
  4. 4.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)CrossRefGoogle Scholar
  5. 5.
    Farhi, E., Goldstone, J., Gutmann, S., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hen, I., Young, A.P.: Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E 84(6), 061152 (2011)CrossRefGoogle Scholar
  7. 7.
    Dickson, N.G., Amin, M.H.S.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106(5), 050502 (2011)CrossRefGoogle Scholar
  8. 8.
    Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. 107(28), 12446–12450 (2010)CrossRefGoogle Scholar
  9. 9.
    Garnerone, S., Zanardi, P., Lidar, D.A.: Adiabatic quantum algorithm for search engine ranking. Phys. Rev. Lett. 108(23), 230506 (2012)CrossRefGoogle Scholar
  10. 10.
    Gaitan, F., Clark, L.: Ramsey numbers and adiabatic quantum computing. Phys. Rev. Lett. 108(1), 010501 (2012)CrossRefGoogle Scholar
  11. 11.
    Somma, R.D., Nagaj, D., Kieferová, M.: Quantum speedup by quantum annealing. Phys. Rev. Lett. 109(5), 050501 (2012)CrossRefGoogle Scholar
  12. 12.
    Aharonov, D., van Dam, W., Kempe, J., et al.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755–787 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99(7), 070502 (2007)CrossRefGoogle Scholar
  14. 14.
    Messiah, A.: Quantum Mechanics. Dover, New York (1999)zbMATHGoogle Scholar
  15. 15.
    Tong, D.M., Singh, K., Kwek, L.C., Oh, C.H.: Sufficiency criterion for the validity of the adiabatic approximation. Phys. Rev. Lett. 98(15), 150402 (2007)CrossRefGoogle Scholar
  16. 16.
    Farhi, E., Goldstone, J., Siper, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106
  17. 17.
    Hen, I., Young, A.P.: Solving the graph-isomorphism problem with a quantum annealer. Phys. Rev. A 86(4), 042310 (2012)CrossRefGoogle Scholar
  18. 18.
    Gaitan, F., Clark, L.: Graph isomorphism and adiabatic quantum computing. Phys. Rev. A 89(2), 022342 (2014)CrossRefGoogle Scholar
  19. 19.
    Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)CrossRefGoogle Scholar
  20. 20.
    Zhang, D.J., Yu, X.D., Tong, D.M.: Theorem on the existence of a nonzero energy gap in adiabatic quantum computation. Phys. Rev. A 90(4), 042321 (2014)CrossRefGoogle Scholar
  21. 21.
    Sun, J., Lu, S.F., Braunstein, S.L.: On models of nonlinear evolution paths in adiabatic quantum algorithms. Commun. Theor. Phys. 59(1), 22–26 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Shenzhen Research InstituteHuazhong University of Science and TechnologyShenzhenChina
  3. 3.Department of Information TechnologyVaasa University of Applied SciencesVaasaFinland

Personalised recommendations