Modified Adaptive Neuro-Fuzzy Inference System Trained by Scoutless Artificial Bee Colony

  • Mohd Najib Mohd Salleh
  • Norlida HassanEmail author
  • Kashif Hussain
  • Noreen Talpur
  • Shi Cheng
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 887)


Neuro-fuzzy systems have produced high accuracy in modeling numerous real-world applications. However, the in-built computational complexity and curse of dimensionality often cease opportunities of implementations in applications with large input size. This is also true with adaptive neuro-fuzzy inference system (ANFIS) as mostly the applications in literature are with small input size. The five-layer architecture of ANFIS is modified in this paper to reduce computational cost. For effective parameters training, the popular swarm-based metaheuristic algorithm Artificial Bee Colony (ABC) algorithm is employed after modification for enhanced convergence ability. The proposed ABC variant eliminates scout bees, hence called ABC-Scoutless, outperforms standard ABC and particle swarm optimization (PSO) on benchmark test functions. The modified ANFIS trained by ABC-Scoutless performs equally better as standard ANFIS on benchmark classification problems with different input range, but with less computational cost due to reduced number of trainable parameters.


Neuro-fuzzy Adaptive neuro-fuzzy inference system (ANFIS) Artificial bee colony Metaheuristic Classification 



The authors would like to thank Universiti Tun Hussein Onn Malaysia (UTHM) for supporting this research under Postgraduate Incentive Research Grant, Vote No. U560.


  1. 1.
    Medina-Santiago, A., Villegas-M, J., Rmirez-Torres, J., Garc\(\acute{{\rm Y}}\)a-Chong, N., Cisneros-Gmez, A., Melgar-Paniagua, E., Bermudez-Rodriguez, J.: Neural network backpropagation with applications into nutrition. In: International Conference on Innovation in Medicine and Healthcare, pp. 46–54. Springer (2017)Google Scholar
  2. 2.
    Kar, S., Das, S., Ghosh, P.K.: Applications of neuro fuzzy systems: a brief review and future outline. Appl. Soft Comput. 15, 243–259 (2014)CrossRefGoogle Scholar
  3. 3.
    Dave, V.S., Dutta, K.: Neural network based models for software effort estimation: a review. Artif. Intell. Rev. 1–13 (2014)Google Scholar
  4. 4.
    Adnan, M.M., Sarkheyli, A., Zain, A.M., Haron, H.: Fuzzy logic for modeling machining process: a review. Artif. Intell. Rev. 43(3), 345–379 (2015)CrossRefGoogle Scholar
  5. 5.
    Choi, I.H., Yoo, S.H., Jung, J.H., Lim, M.T., Oh, J.J., Song, M.K., Ahn, C.K.: Design of neuro-fuzzy based intelligent inference algorithm for energy-management system with legacy device. Trans. Korean Inst. Electr. Eng. 64(5), 779–785 (2015)CrossRefGoogle Scholar
  6. 6.
    Najafzadeh, M., Etemad-Shahidi, A., Lim, S.Y.: Scour prediction in long contractions using ANFIS and SVM. Ocean Eng. 111, 128–135 (2016)CrossRefGoogle Scholar
  7. 7.
    Mosaad, M.I., Salem, F.: LFC based adaptive PID controller using ann and ANFIS techniques. J. Electr. Syst. Inf. Technol. 1(3), 212–222 (2014)Google Scholar
  8. 8.
    Wang, W.-C., Chau, K.-W., Cheng, C.-T., Qiu, L.: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374(3), 294–306 (2009)CrossRefGoogle Scholar
  9. 9.
    Nasrollahzadeh, A., Karimian, G., Mehrafsa, A.: Implementation of neuro-fuzzy system with modified high performance genetic algorithm on embedded systems. Appl. Soft Comput. (2017)Google Scholar
  10. 10.
    Rezakazemi, M., Dashti, A., Asghari, M., Shirazian, S.: H 2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int. J. Hydrogen Energy (2017)Google Scholar
  11. 11.
    Mostafaei, M., Javadikia, H., Naderloo, L.: Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy 115, 626–636 (2016)CrossRefGoogle Scholar
  12. 12.
    Afifi, F., Anuar, N.B., Shamshirband, S., Choo, K.-K.R.: DyHAP: dynamic hybrid anfis-pso approach for predicting mobile malware. PloS one 11(9), e0162627 (2016)CrossRefGoogle Scholar
  13. 13.
    Karaboga, D., Kaya, E.: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training. Appl. Soft Comput. 49, 423–436 (2016)CrossRefGoogle Scholar
  14. 14.
    Mahapatra, S., Daniel, R., Dey, D.N., Nayak, S.K.: Induction motor control using PSO-ANFIS. Procedia Comput. Sci. 48, 753–768 (2015)CrossRefGoogle Scholar
  15. 15.
    Çavdar, T.: Pso tuned anfis equalizer based on fuzzy C-means clustering algorithm. AEU-Int. J. Electr. Commun. 70(6), 799–807 (2016)CrossRefGoogle Scholar
  16. 16.
    Pousinho, H.M.I., Mendes, V.M.F., Catalão, J.P.S.: Short-term electricity prices forecasting in a competitive market by a hybrid PSO-ANFIS approach. Int. J. Electr. Power Energy Syst. 39(1), 29–35 (2012)CrossRefGoogle Scholar
  17. 17.
    Turki, M., Bouzaida, S., Sakly, A., M’Sahli, F.: Adaptive control of nonlinear system using neuro-fuzzy learning by PSO algorithm. In: 16th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 519–523. IEEE (2012)Google Scholar
  18. 18.
    Shoorehdeli, M.A., Teshnehlab, M., Sedigh, A.K.: Training anfis as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended kalman filter. Fuzzy Sets Syst. 160(7), 922–948 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Karaboga, D., Kaya, E.: Training ANFIS using artificial bee colony algorithm. In: IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA), pp. 1–5. IEEE (2013)Google Scholar
  20. 20.
    Ismail, F.H., Aziz, M.A., Hassanien, A.E.: Optimizing the parameters of sugeno based adaptive neuro fuzzy using artificial bee colony: a case study on predicting the wind speed. In: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 645–651. IEEE (2016)Google Scholar
  21. 21.
    Salleh, M.N.M., Hussain, K., Naseem, R., Uddin, J.: Optimization of ANFIS using artificial bee colony algorithm for classification of Malaysian SMEs. In: International Conference on Soft Computing and Data Mining, pp. 21–30. Springer (2016)Google Scholar
  22. 22.
    Lu, J.-T., Chang, Y.-C., Ho, C.-Y.: The optimization of chiller loading by adaptive neuro-fuzzy inference system and genetic algorithms. Math. Prob. Eng. 2015 (2015)Google Scholar
  23. 23.
    Nhu, H.N., Nitsuwat, S., Sodanil, M.: Prediction of stock price using an adaptive neuro-fuzzy inference system trained by firefly algorithm. In: International Computer Science and Engineering Conference (ICSEC), pp. 302–307. IEEE (2013)Google Scholar
  24. 24.
    Hassan, N., Ghazali, R., Hussain, K.: Training ANFIS using catfish-particle swarm optimization for classification. In: International Conference on Soft Computing and Data Mining, pp. 201–210. Springer (2016)Google Scholar
  25. 25.
    Hussain, K., Salleh, M.N.M., Leman, A.M.: Optimization of ANFIS using mine blast algorithm for predicting strength of Malaysian small medium enterprises. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 118–123. IEEE (2015)Google Scholar
  26. 26.
    Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)CrossRefGoogle Scholar
  27. 27.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, Technical report (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohd Najib Mohd Salleh
    • 1
  • Norlida Hassan
    • 1
    Email author
  • Kashif Hussain
    • 1
  • Noreen Talpur
    • 1
  • Shi Cheng
    • 2
  1. 1.Faculty of Computer Science and Information TechnologyUniversiti Tun Hussein Onn MalaysiaBatu PahatMalaysia
  2. 2.School of Computer ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations