Advertisement

An Improvement of the Standard Hough Transform Method Based on Geometric Shapes

  • Abdoulaye SereEmail author
  • Frédéric T. Ouedraogo
  • Boureima Zerbo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 887)

Abstract

Hough Transform is a well known method in image processing, for straight line recognition, very popular for detecting complex forms, such as circles, ellipses, arbitrary shapes in digital images. In this paper, we are interested in the Hough transform method that associates a point to a sine curve, named the standard hough transform, applied to a big set of continue points such as triangles, rectangles, octogons, hexagons in order to overcome time problem, due to the small size of a pixel and to establish optimization techniques for the Hough Transform method in time complexity, in the main purpose to obtain thick analytical straight line recognition, in following some parameters. The proposed methods, named Triangular Hough Transform and Rectangular Hough Transform considers an image as a grid, respectively represented in a triangular tiling or a rectangular tiling and contribute to have accumulator data to reduce computation time, accepting limited noises in straight line detection. The analysis also deals with the case of geometric shapes, such as octogons and hexagons where the tiling procedure of image space is necessary to obtain new Hough Transform methods based on these forms.

Keywords

Hough transform Analytical straight line Pattern recognition 

References

  1. 1.
    Dexet, M.: Architecture d’un modeleur géométrique base topologique d’objets discrets et méthodes de reconstruction en dimensions 2 et 3. Université de Poitiers, France, Thèse en informatique (2006)Google Scholar
  2. 2.
    Ballard, D.: Generalizing the Hough Transform to detect arbitrary shapes. Pattern Recogn. 13, 111–112 (1981)CrossRefGoogle Scholar
  3. 3.
    Guo, L., Chutatape, O.: Influence of discretization in image space on Hough Transform. Pattern Recognit. 32(4), 635–644 (1999)CrossRefGoogle Scholar
  4. 4.
    Maître, H.: Un panorama de la transformée de hough - a review on hough transform. traitement du signal 2(4), 305–317 (1985)MathSciNetGoogle Scholar
  5. 5.
    Reveillés, J.-P.: Combinatorial pieces in digital lines and planes. In: Proceeding SPIE 2573, Vision Geometry, vol. 4, no. 23 (1995)Google Scholar
  6. 6.
    Fanelli, G., Gall, J., Van Goo, L.: Hough Transform-based mouth localization for audio-visual speech recognition. In: British Machine Vision Conference, September 2009Google Scholar
  7. 7.
    Yao, A., Gall, J., Van Gool, L.: A Hough Transform-based voting framework for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010) (2010)Google Scholar
  8. 8.
    Sere, A.: Transformations analytiques appliquées aux images multi- échelles et bruitées, thèse en informatique, Université de Ouagadougou (2013)Google Scholar
  9. 9.
    Sere, A., Sie, O., Traore, S.: Extensions of standard Hough Transform based on object dual and applications. Int. J. Emer. Trends Comput. Inf. Sci. 6(1), 20–24 (2015)Google Scholar
  10. 10.
    Mukhopadhyay, P., Chaudhuri, B.B.: A survey of Hough Transform. Pattern Recogn. (2014).  https://doi.org/10.1016/j.patcog.2014.08.027CrossRefGoogle Scholar
  11. 11.
    Lo, R.-C., Tsai, W.-H.: Gray-scale hough transform for thick line detection in gray-scale images. Pattern Recogn. 28(5), 647–661 (1995)CrossRefGoogle Scholar
  12. 12.
    Koc San, D., Turker, M.: Building extraction from high resolution satellite images using Hough Transform. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto, Japan, vol. 38, Part 8 (2010)Google Scholar
  13. 13.
    Saha, S., Basu, S., Nasipuri, M., Basu, D.Kr.: A Hough Transform based technique for text segmentation. J. Comput. 2(2) (2010). ISSN 2151-9617Google Scholar
  14. 14.
    Han, J.H., Kóczy, L., Poston, T.: Fuzzy Hough Transform. Pattern Recogn. Lett. 15(7), 649–658 (1994)CrossRefGoogle Scholar
  15. 15.
    Nagy, B.: Number of words characterizing digital balls on the triangular tiling. In: The Proceedings of DGCI 2016 (2016)Google Scholar
  16. 16.
    Dexet, M., Andres, E.: A generalized preimage for the digital analytical hyperplane recognition. J. Discrete Appl. Math. 153(4), 476–489 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sere, A., Sie, O., Andres, E.: Extended standard Hough Transform for Analytical Line Recognition. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 4(3), 256–266 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdoulaye Sere
    • 1
    Email author
  • Frédéric T. Ouedraogo
    • 2
  • Boureima Zerbo
    • 1
  1. 1.Laboratory of Mathematics and Computer ScienceUniversity OUAGA 1 Prof. Joseph KI-ZERBOOuagadougouBurkina Faso
  2. 2.Laboratory of Mathematics and Computer ScienceUniversité de KoudougouKoudougouBurkina Faso

Personalised recommendations