Advertisement

Geospatial Big Data, Analytics and IoT: Challenges, Applications and Potential

  • Ramgopal Kashyap
Chapter
Part of the Studies in Big Data book series (SBD, volume 49)

Abstract

Machine learning gives to great degree critical instruments for astute geo-and ecological information investigation, handling and representation. This chapter introduces a review of provincial arrangement of ecological information, record of consistent natural and contamination information, including the utilization of programmed calculations, enhancement of checking systems. Machine learning calculations are intended to distinguish proficiently and to foresee precisely designs inside multivariate information. They give investigators computational apparatuses to help prescient demonstrating and the understanding of associations of information. The examination of giant volumes of stand-out variable geospatial info utilizing machine learning estimations thus offers out of the question confirmation to trade and analysis within the geosciences. Geosciences info square measure currently and once more delineated by a restriction within the variety and transports of direct acknowledgments, static amendment in these info associate degreed an uncommon condition of interclass fancy and interclass likeness. Therefore the unnoticeable segments of however estimations square measure connected ought to during this means are fitting to the setting of geosciences info. This would love to utilize machine learning as systems for understanding the abstraction development of advanced land ponders lead a focused and careful examination of machine learning estimations, tending to the general machine learning techniques, for coordinated lithology depiction application in addition build and check a unique framework for increasing robust evaluations of the weakness connected with machine learning calculation add up to desires. The experiences snatched from these examinations prompt the any amendment and examination and utilizing machine learning that address the difficulties attempt geoscientists for geospatial controlled depiction. Standards square measure created that detail the orchestrating and blends of various abstraction info, the amendment of organized classifiers for a given application and therefore the extraordinary quantitative and abstraction assessment of yields through associate degree intelligent examination in a very zone that’s created courses of action for cash connected mineralization, the combo of coordinated and unattended machine learning estimations for the elemental examination of past land maps and indicating of great elucidations of geographical wonders.

Keywords

Artificial neural network Big data Cloud computing Machine learning Geospatial data analysis Internet of things 

References

  1. 1.
    Kim, L.: DeepX: deep learning accelerator for restricted boltzmann machine artificial neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1441–1453 (2018).  https://doi.org/10.1109/tnnls.2017.2665555MathSciNetCrossRefGoogle Scholar
  2. 2.
    Mandal, I.: Machine learning algorithms for the creation of clinical healthcare enterprise systems. Enterp. Inf. Syst. 1–27 (2016).  https://doi.org/10.1080/17517575.2016.1251617
  3. 3.
    Hanks, E., Schliep, E., Hooten, M., Hoeting, J.: Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification. Environmetrics 26(4), 243–254 (2015).  https://doi.org/10.1002/env.2331MathSciNetCrossRefGoogle Scholar
  4. 4.
    Taş, E.: Classification of Gene samples using pair-wise support vector machines. Alphanumeric J. (2017).  https://doi.org/10.17093/alphanumeric.345115CrossRefGoogle Scholar
  5. 5.
    Dill, E., Uijt de Haag, M.: 3D Multi-copter navigation and mapping using GPS, inertial, and LiDAR. Navigation 63(2), 205–220 (2016).  https://doi.org/10.1002/navi.134CrossRefGoogle Scholar
  6. 6.
    Giachetta, R.: A framework for processing large scale geospatial and remote sensing data in MapReduce environment. Comput. Graph. 49, 37–46 (2015).  https://doi.org/10.1016/j.cag.2015.03.003CrossRefGoogle Scholar
  7. 7.
    Corti, P., Lewis, B., Kralidis, A.: Hypermap registry: an open source, standards-based geospatial registry and search platform. Open Geospatial Data Softw. Stand. 3(1) (2018).  https://doi.org/10.1186/s40965-018-0051-x
  8. 8.
    Hristopulos, D.: Stochastic local interaction (SLI) model: bridging machine learning and geostatistics. Comput. Geosci. 85, 26–37 (2015).  https://doi.org/10.1016/j.cageo.2015.05.018CrossRefGoogle Scholar
  9. 9.
    Kuang, W., Brown, L., Wang, Z.: Selective switching mechanism in virtual machines via support vector machines and transfer learning. Mach. Learn. 101(1–3), 137–161 (2014).  https://doi.org/10.1007/s10994-014-5448-xMathSciNetCrossRefGoogle Scholar
  10. 10.
    Zakaria, S., Rahman, N.A.: Analyzing the violent crime patterns in peninsular malaysia: exploratory spatial data analysis (ESDA) approach. Jurnal Teknologi 72(1) (2014).  https://doi.org/10.11113/jt.v72.1816
  11. 11.
    Hussain, A., Cambria, E., Schuller, B., Howard, N.: Affective neural networks and cognitive learning systems for big data analysis. Neural Netw. 58, 1–3 (2014).  https://doi.org/10.1016/j.neunet.2014.07.010CrossRefGoogle Scholar
  12. 12.
    Sarkar, J.L., Panigrahi, C.R., Pati, B., Das, H.: A novel approach for real-time data management in wireless sensor networks. In: Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics, pp. 599–607. Springer, New Delhi (2016)Google Scholar
  13. 13.
    Leuenberger, M., Kanevski, M.: Extreme learning machines for spatial environmental data. Comput. Geosci. 85, 64–73 (2015).  https://doi.org/10.1016/j.cageo.2015.06.020CrossRefGoogle Scholar
  14. 14.
    Das, H., Naik, B., Pati, B., Panigrahi, C.R.: A survey on virtual sensor networks framework. Int. J. Grid Distrib. Comput. 7(5), 121–130 (2014)CrossRefGoogle Scholar
  15. 15.
    Gutiérrez, P., Tiňo, P., Hervás-Martínez, C.: Ordinal regression neural networks based on concentric hyperspheres. Neural Netw. 59, 51–60 (2014).  https://doi.org/10.1016/j.neunet.2014.07.001CrossRefzbMATHGoogle Scholar
  16. 16.
    Schöning, J.: Interaction with geospatial data. It—Inf. Technol. 57(1) (2015).  https://doi.org/10.1515/itit-2014-1058
  17. 17.
    Couellan, N., Wang, W.: Uncertainty-safe large scale support vector machines. Comput. Stat. Data Anal. 109, 215–230 (2017).  https://doi.org/10.1016/j.csda.2016.12.008MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bottou, L.: From machine learning to machine reasoning. Mach. Learn. 94(2), 133–149 (2013).  https://doi.org/10.1007/s10994-013-5335-xMathSciNetCrossRefGoogle Scholar
  19. 19.
    Jivani, A., Shah, K., Koul, S., Naik, V.: The Adept K-Nearest neighbour algorithm—an optimization to the conventional K-Nearest neighbour algorithm. Trans. Mach. Learn. Artif. Intell. 4(1) (2016).  https://doi.org/10.14738/tmlai.41.1876
  20. 20.
    Coutinho-Rodrigues, J., Simão, A., Antunes, C.: A GIS-based multicriteria spatial decision support system for planning urban infrastructures. Decis. Support Syst. 51(3), 720–726 (2011).  https://doi.org/10.1016/j.dss.2011.02.010CrossRefGoogle Scholar
  21. 21.
    Sashegyi, A.: A benefit-risk model to facilitate DMC-sponsor communication and decision making. Drug Inf. J. 45(6), 749–757 (2011).  https://doi.org/10.1177/009286151104500511CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Wang, C.: Spatial data visualization based on cluster analysis. J. Comput. Appl. 33(10), 2981–2983 (2013).  https://doi.org/10.3724/sp.j.1087.2013.02981CrossRefGoogle Scholar
  23. 23.
    Magliocca, N., McConnell, V., Walls, M.: Integrating global sensitivity approaches to deconstruct spatial and temporal sensitivities of complex spatial agent-based models. J. Artif. Soc. Soc. Simul. 21(1) (2018).  https://doi.org/10.18564/jasss.3625
  24. 24.
    Buskirk, T.: Surveying the forests and sampling the trees: an overview of classification and regression trees and random forests with applications in survey research. Surv. Pract. 11(1), 1–13 (2018).  https://doi.org/10.29115/sp-2018-0003MathSciNetCrossRefGoogle Scholar
  25. 25.
    Reddy, K.H.K., Das, H., Roy, D.S.: A Data Aware Scheme for Scheduling Big-Data Applications with SAVANNA Hadoop. Futures of Network. CRC Press (2017)Google Scholar
  26. 26.
    Yasuda, M.: Learning algorithm of boltzmann machine based on spatial monte carlo integration method. Algorithms 11(4), 42 (2018).  https://doi.org/10.3390/a11040042MathSciNetCrossRefGoogle Scholar
  27. 27.
    Junier, T., Hervé, V., Wunderlin, T., Junier, P.: MLgsc: a maximum-likelihood general sequence classifier. PLoS ONE 10(7), e0129384 (2015).  https://doi.org/10.1371/journal.pone.0129384CrossRefGoogle Scholar
  28. 28.
    Chen, L., Liu, D.: Research on the three-dimensional geological modeling based on subdivision surface modeling technology. Key Eng. Mater. 500, 646–651 (2012).  https://doi.org/10.4028/www.scientific.net/kem.500.646CrossRefGoogle Scholar
  29. 29.
    Kondratyev, A., Giorgidze, G.: MVA optimisation with machine learning algorithms. SSRN Electron. J. (2017).  https://doi.org/10.2139/ssrn.2921822CrossRefGoogle Scholar
  30. 30.
    Goel, S., Mamta, M.: Generalized discussion over classification algorithm under supervised machine learning paradigm. Int. J. Comput. Appl. 180(32), 29–34 (2018).  https://doi.org/10.5120/ijca2018916858
  31. 31.
    Smith, T., Marshall, L., Sharma, A.: Predicting hydrologic response through a hierarchical catchment knowledgebase: a Bayes empirical Bayes approach. Water Resour. Res. 50(2), 1189–1204 (2014).  https://doi.org/10.1002/2013wr015079CrossRefGoogle Scholar
  32. 32.
    Strycharski, A., Koza, Z.: The dual model for an Ising model with nearest and next-nearest neighbors. J. Phys. Math. Theor. 46(29), 295003 (2013).  https://doi.org/10.1088/1751-8113/46/29/295003MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Möller, A., Tutz, G., Gertheiss, J.: Random forests for functional covariates. J. Chemom. 30(12), 715–725 (2016).  https://doi.org/10.1002/cem.2849CrossRefGoogle Scholar
  34. 34.
    Ceryan, N.: Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J. Afr. Earth Sci. 100, 634–644 (2014).  https://doi.org/10.1016/j.jafrearsci.2014.08.006CrossRefGoogle Scholar
  35. 35.
    Ertuğrul, Ö.: A novel type of activation function in artificial neural networks: trained activation function. Neural Netw. 99, 148–157 (2018).  https://doi.org/10.1016/j.neunet.2018.01.007CrossRefGoogle Scholar
  36. 36.
    Bakillah, M., Liang, S.: Open geospatial data, software and standards. Open Geospatial Data Softw. Stand. 1(1) (2016).  https://doi.org/10.1186/s40965-016-0004-1
  37. 37.
    Umar, A.: Spatial pattern of draught occurence in upper benue river basin. Glob. J. Environ. Sci. 5(1) (2006).  https://doi.org/10.4314/gjes.v5i1.2468
  38. 38.
    Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through internet of things. IEEE Internet Things J. 1(2), 112–121 (2014).  https://doi.org/10.1109/jiot.2013.2296516CrossRefGoogle Scholar
  39. 39.
    Li, F., Zheng, B.: Design of the smart city planning system based on the internet of things. Int. J. Smart Home 10(11), 207–218 (2016).  https://doi.org/10.14257/ijsh.2016.10.11.18
  40. 40.
    Singh, P., Rashid, E.: Smart home automation deployment on third party cloud using internet of things. J. Bioinform. Intell. Control 4(1), 31–34 (2015).  https://doi.org/10.1166/jbic.2015.1113CrossRefGoogle Scholar
  41. 41.
    Mishra, B.S.P., Das, H., Dehuri, S., Jagadev, A.K.: Cloud Computing for Optimization: Foundations, Applications, and Challenges, vol. 39. Springer (2018)Google Scholar
  42. 42.
    Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.): In: Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2017, vol. 710. Springer (2018)Google Scholar
  43. 43.
    Nayak, J., Naik, B., Jena, A.K., Barik, R.K., Das, H.: Nature inspired optimizations in cloud computing: applications and challenges. In: Cloud Computing for Optimization: Foundations, Applications, and Challenges, pp. 1–26. Springer, Cham (2018)Google Scholar
  44. 44.
    Jammes, F.: Internet of things in energy efficiency. Ubiquity 2016(February), 1–8 (2016).  https://doi.org/10.1145/2822887CrossRefGoogle Scholar
  45. 45.
    Nowak, W., de Barros, F., & Rubin, Y. (2010). Bayesian geostatistical design: Task-driven optimal site investigation when the geostatistical model is uncertain. Water Resour. Res. 46(3).  https://doi.org/10.1029/2009wr008312
  46. 46.
    Jo, H., Son, T., Jeong, S., Kang, S.: Proximity-based asynchronous messaging platform for location-based internet of things service. ISPRS Int. J. Geo-Inf. 5(7), 116 (2016).  https://doi.org/10.3390/ijgi5070116CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Amity School of Engineering and TechnologyAmity University ChhattisgarhRaipurIndia

Personalised recommendations