Advertisement

Hyperspectral Remote Sensing Images and Supervised Feature Extraction

  • Aloke DattaEmail author
  • Susmita Ghosh
  • Ashish Ghosh
Chapter
Part of the Studies in Big Data book series (SBD, volume 49)

Abstract

In the last three decade, one of the significant breakthrough in remote sensing is to introduce of hyperspectral sensors, which acquire a set of images from hundreds of narrow and contiguous wavelengths of the electromagnetic spectrum from visible to infrared regions. Images, which are captured by these sensors, have detailed information in the spectral domain to identify and distinguish spectrally unique materials. To recognize the objects present in hyperspectral images, classification/clustering task need to be performed. But due to the presence of huge number of attributes, classification technique becomes more complex. So, before performing the classification task, reduce the number of attributes (denoted by dimensionality of the data) is an important step where the aim is to discard the redundant attributes and make it less time consuming for classification. In this chapter, few supervised feature extraction techniques for hyperspectral images i.e., prototype space feature extraction (PSFE), modified Fisher’s linear discriminant analysis (MFLDA), maximum margin criteria (MMC) based and partitioned MMC based methods are explained. Experiments are conducted over different hyperspectral data set with different quantitative measures to analyze the performance of these feature extraction methods.

References

  1. 1.
    Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation, 6th edn. Wiley, New Delhi, India (2014)Google Scholar
  2. 2.
    Campbell, J.B., Wynne, R.H.: Introduction to Remote Sensing, 5th edn. Guilford Press, New York, USA (2011)Google Scholar
  3. 3.
    Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis: An Introduction, 1st edn. Springer, New York, USA (1999)CrossRefGoogle Scholar
  4. 4.
    Varshney, P.K., Arora, M.K.: Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, 2nd edn. Springer, Berlin, Germany (2004)CrossRefGoogle Scholar
  5. 5.
    Chang, C.-I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification, 1st edn. Kluwer Academic/Plenum Publisher, New York, USA (2003)CrossRefGoogle Scholar
  6. 6.
    Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 17–28 (2002)Google Scholar
  7. 7.
    Eismann, M.T.: Hyperspectral Remote Sensing, 1st edn. SPIE Press, Washigton, USA (2012)CrossRefGoogle Scholar
  8. 8.
    Manolakis, D., Marden, D., Shaw, G.A.: Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 14(1), 79–116 (2003)Google Scholar
  9. 9.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRefGoogle Scholar
  10. 10.
    Bishop, C.M.: Neural Networks for Pattern Recognition, 1st edn. Oxford University Press, New Delhi, India (1995)zbMATHGoogle Scholar
  11. 11.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach, 1st edn. Prentice-Hall International, New Delhi, India (1982)zbMATHGoogle Scholar
  12. 12.
    Ghosh, A., Datta, A., Ghosh, S.: Self-adaptive differential evolution for feature selection in hyperspectral image data. Appl. Soft Comput. 13(4), 1969–1977 (2013)CrossRefGoogle Scholar
  13. 13.
    Jia, X., Kuo, B.-C., Crawford, M.M.: Feature mining for hyperspectral image classification. Proc. IEEE 101(3), 676–697 (2013)CrossRefGoogle Scholar
  14. 14.
    Datta, A., Ghosh, S., Ghosh, A.: Band elimination of hyperspectral imagery using partitioned band image correlation and capacitory discrimination. Int. J. Remote Sens. 35(2), 554–577 (2014)CrossRefGoogle Scholar
  15. 15.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Acacdemic Press, San Diego, CA, USA (1990)zbMATHGoogle Scholar
  16. 16.
    Datta, A., Ghosh, S., Ghosh, A.: Combination of clustering and ranking techniques for unsupervised band selection of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(6), 2814–2823 (2015)CrossRefGoogle Scholar
  17. 17.
    Jia, S., Ji, Z., Shen, L.: Unsupervised band selection for hyperspectral imagery classification without manual band removal. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 5(2), 531–543 (2012)CrossRefGoogle Scholar
  18. 18.
    Datta, A., Ghosh, S., Ghosh, A.: Wrapper based feature selection in hyperspectral image data using self-adaptive differential evolution. In: Proceedings of the International Conference on Image Information Processing (ICIIP), pp. 1–6 (2011)Google Scholar
  19. 19.
    Datta, A., Ghosh, S., Ghosh, A.: Clustering based band selection for hyperspectral images. In: Proceedings of the International Conference on Communications, Devices and Intelligent Systems (CoDIS), pp. 101–104 (2012)Google Scholar
  20. 20.
    Mojaradi, B., Abrishami-Moghaddam, H., Zoej, M.J.V., Duin, R.P.W.: Dimensionality reduction of hyperspectral data via spectral feature extraction. IEEE Trans. Geosci. Remote Sens. 47(7), 2091–2105 (2009)CrossRefGoogle Scholar
  21. 21.
    Datta, A., Ghosh, S., Ghosh, A.: Band elimination of hyperspectral imagery using correlation of partitioned band image. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 412–417 (2013)Google Scholar
  22. 22.
    Jain, A., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19, 153–189 (1997)CrossRefGoogle Scholar
  23. 23.
    Jia, X., Richards, J.A.: Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans. Geosci. Remote Sens. 37, 538–542 (1999)CrossRefGoogle Scholar
  24. 24.
    Datta, A., Ghosh, S., Ghosh, A.: Supervised band extraction of hyperspectral images using partitioned maximum margin criterion. IEEE Geosci. Remote Sens. Lett. 14(1), 82–86 (2017)CrossRefGoogle Scholar
  25. 25.
    Fauvel, M., Chanussot, J., Benediktsson, J.A.: Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. J. Adv. Signal Process. 2009, 1–14 (2009)Google Scholar
  26. 26.
    Datta, A., Ghosh, S., Ghosh, A.: Maximum margin criterion based band extraction of hyperspectral imagery. In: Proceedings of the Fourth International Conference on Emerging Applications of Information Technology (EAIT), pp. 300–304 (2014)Google Scholar
  27. 27.
    Kuo, B.-C., Landgrebe, D.A.: Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 42, 1096–1105 (2004)CrossRefGoogle Scholar
  28. 28.
    Du, Q.: Modified Fisher’s linear discriminant analysis for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 4(4), 503–507 (2007)CrossRefGoogle Scholar
  29. 29.
    Li, H., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)CrossRefGoogle Scholar
  30. 30.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, New York, USA (2006)zbMATHGoogle Scholar
  31. 31.
    Yang, W., Wang, J., Ren, M., Yang, J., Liu, L.Z.G.: Feature extraction based on Laplacian bidirectional maximum margin criterion. Pattern Recogn. 42(11), 2327–2334 (2009)CrossRefGoogle Scholar
  32. 32.
    Kumar, S., Ghosh, J., Crawford, M.M.: Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 39(7), 1368–1379 (2001)CrossRefGoogle Scholar
  33. 33.
    Jimenez, L.O., Landgrebe, D.A.: Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE Trans. Geosci. Remote Sens. 37, 2653–2667 (1999)CrossRefGoogle Scholar
  34. 34.
    Ham, J., Chen, Y., Crawford, M.M., Ghosh, J.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(3), 492–501 (2005)CrossRefGoogle Scholar
  35. 35.
    Datta, A., Ghosh, S., Ghosh, A.: PCA, Kernel PCA and dimensionality reduction in hyperspectral images. In: Advances in Principal Component Analysis: Research and Developement, pp. 19–46. Springer Nature, Singapore (2018)Google Scholar
  36. 36.
    Yao, J., Dash, M., Tan, S.T., Liu, H.: Entropy-based fuzzy clustering and fuzzy modeling. Fuzzy Sets Syst. 113, 381–388 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of CSENIT MeghalayaShillongIndia
  2. 2.Department of CSEJadavpur UniversityKolkataIndia
  3. 3.Center for Soft Computing ResearchIndian Statistical InstituteKolkataIndia

Personalised recommendations