Geocloud4GI: Cloud SDI Model for Geographical Indications Information Infrastructure Network

  • Rabindra Kumar Barik
  • Meenakshi Kandpal
  • Harishchandra Dubey
  • Vinay Kumar
  • Himansu Das
Part of the Studies in Big Data book series (SBD, volume 49)


In the digital planet, the concept of spatial data, its cloud and Geographical Indications (GI) plays a crucial role for mapping any organization or point and acquired a reputation for producing quality results based on their spatial characteristics, including their visualization. From the twentieth century onwards, the GIS were also developed to capture, store and analyze spatial data, replacing the tedious analogue map making process. The current examine paper put forwards along with develops a Cloud SDI representation named as Geocloud4GI for giving out, investigation and dispensation of geospatial facts particularly for registered GIs in India. The primary purpose of Geocloud4GI framework is to assimilate the entire registered GIs’ information and related locations such as state wise and year wise registered in India. Geocloud4GI framework can assist/help common people to get enough information for their further studies and research on GI as one of the integral part of IPR studies. QGIS is used for GI geospatial database creation and visualization. With the integration of QGIS Cloud Plug-in, the GI geospatial database uploaded in cloud server for analysis cloud infrastructure. Finally, overlay analysis has performed with the help of Google base maps in Geocloud4GI environment.


Cloud computing SDI Geographical Indications Overlay analysis 



Authors are thanking to all the experts those are involved for completion of these research work.


  1. 1.
    Arundel, J., Winter, S., Gui, G., Keatley, M.: A web-based application for beekeepers to visualise patterns of growth in floral resources using MODIS data. Environ. Model Softw. 83, 116–125 (2016)CrossRefGoogle Scholar
  2. 2.
    Barik, R.K., Samaddar, A.B.: Service oriented architecture based SDI model for education sector in India. In: Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013, pp. 555–562 (2014)Google Scholar
  3. 3.
    Barik, R.K., Samaddar, A.B.: Service Oriented architecture based SDI model for mineral resources management in India. Univers. J. Geosci. 2, 1–6 (2014)Google Scholar
  4. 4.
    Brovelli, M.A., Minghini, M., Zamboni, G.: Public participation GIS: a FOSS architecture enabling field-data collection. Int. J. Digit. Earth 8(5), 345–363 (2014)CrossRefGoogle Scholar
  5. 5.
    Coleman, D.J., Rajabifard, A., Kolodziej, K.W.: Expanding the SDI environment: comparing current spatial data infrastructure with emerging indoor location-based services. Int. J. Digit. Earth 9(6), 629–647 (2016)CrossRefGoogle Scholar
  6. 6.
    Georis-Creuseveau, J., Claramunt, C., Gourmelon, F.: A modelling framework for the study of Spatial Data Infrastructures applied to coastal management and planning. Int. J. Geogr. Inf. Sci. 31(1), 122–138 (2016)CrossRefGoogle Scholar
  7. 7.
    Giuliani, G., Lacroix, P., Guigoz, Y., Roncella, R., Bigagli, L., Santoro, M., Mazzetti, P., Nativi, S., Ray, N., Lehmann, A.: Bringing GEOSS services into practice: a capacity building resource on spatial data infrastructures (SDI). Trans. GIS (2016)Google Scholar
  8. 8.
    Laura, J.R., Hare, T.M., Gaddis, L.R., Fergason, R.L., Skinner, J.A., Hagerty, J.J., Archinal, B.A.: Towards a planetary spatial data infrastructure. ISPRS Int. J. Geo-Inf. 6(6), 181 (2017)CrossRefGoogle Scholar
  9. 9.
    Leidig, Mathias, Teeuw, Richard: Free software: a review, in the context of disaster management. Int. J. Appl. Earth Obs. Geoinf. 42, 49–56 (2015)CrossRefGoogle Scholar
  10. 10.
    Mwange, C., Mulaku, G.C., Siriba, D.N.: Reviewing the status of national spatial data infrastructures in Africa. Surv. Rev. 1–10 (2016)Google Scholar
  11. 11.
    Barik, R.K.: CloudGanga: cloud computing based SDI model for Ganga River Basin Management in India. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 8(4), 54–71 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Patra, S.S., Barik, R.K.: Dynamic dedicated server allocation for service oriented multi-agent data intensive architecture in biomedical and geospatial cloud. In: Cloud Technology: Concepts, Methodologies, Tools, and Applications, pp. 2262–2273. IGI Global (2015)Google Scholar
  13. 13.
    Barik, R.K., Samaddar, A.B., Gupta, R.D.: Investigations into the efficacy of open source GIS software. In: International Conference Map World Forum (2009)Google Scholar
  14. 14.
    Samaddar, S.G., Barik, R.K.: A mobile framework for geographical indication web services. In: Third International Conference on Computational Intelligence and Information Technology, pp. 420–426 (2013)Google Scholar
  15. 15.
    Barik, R.K., Samaddar, A.B., Samaddar, S.G.: Service oriented architecture based SDI model for geographical indication web services. Int. J. Comput. Appl. 25(4), 42–49 (2011)Google Scholar
  16. 16.
    Das, H., Jena, A.K., Badajena, J.C., Pradhan, C., Barik, R.K.: Resource allocation in cooperative cloud environments. In: Progress in Computing, Analytics and Networking, pp. 825–841. Springer, Singapore (2018)Google Scholar
  17. 17.
    Mishra, B.S.P., Das, H., Dehuri, S., Jagadev, A.K.: Cloud Computing for Optimization: Foundations, Applications, and Challenges, vol. 39. Springer (2018)Google Scholar
  18. 18.
    Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.): Progress in computing, analytics and networking. In: Proceedings of ICCAN 2017, vol. 710. Springer (2018)Google Scholar
  19. 19.
    Nayak, J., Naik, B., Jena, A.K., Barik, R.K., Das, H.: Nature inspired optimizations in cloud computing: applications and challenges. In: Cloud Computing for Optimization: Foundations, Applications, and Challenges, pp. 1–26. Springer, Cham (2018)Google Scholar
  20. 20.
    Reddy, K.H.K., Das, H., Roy, D.S.: A data aware scheme for scheduling big-data applications with SAVANNA Hadoop. In: Futures of Network. CRC Press (2017)Google Scholar
  21. 21.
    Sarkhel, P., Das, H., Vashishtha, L.K.: Task-scheduling algorithms in cloud environment. In: Computational Intelligence in Data Mining, pp. 553–562. Springer, Singapore (2017)Google Scholar
  22. 22.
    Panigrahi, C.R., Tiwary, M., Pati, B., Das, H.: Big data and cyber foraging: future scope and challenges. In: Techniques and Environments for Big Data Analysis, pp. 75–100. Springer, Cham (2016)Google Scholar
  23. 23.
    Kar, I., Das, H.: Energy aware task scheduling using genetic algorithm in cloud datacentres. Int. J. Comput. Sci. Inf. Technol. Res. 4(1), 106–111 (2016)Google Scholar
  24. 24.
    Sahoo, A.K., Das, H.: Energy efficient scheduling using DVFS technique in cloud datacenters. Int. J. Comput. Sci. Inf. Technol. Res. 4(1), 59–66 (2016)Google Scholar
  25. 25.
    Barik, R.K., Tripathi, A., Dubey, H., Lenka, R. K., Pratik, T., Sharma, S., …, Das, H.: Mistgis: optimizing geospatial data analysis using mist computing. In: Progress in Computing, Analytics and Networking, pp. 733–742. Springer, Singapore (2018)Google Scholar
  26. 26.
    Barik, R.K., Dubey, H., Misra, C., Borthakur, D., Constant, N., Sasane, S.A., …, Mankodiya, K.: Fog assisted cloud computing in era of big data and internet-of-things: systems, architectures, and applications. In: Cloud Computing for Optimization: Foundations, Applications, and Challenges, pp. 367–394. Springer, Cham (2018)Google Scholar
  27. 27.
    Das, H., Panda, G.S., Muduli, B., Rath, P.K.: The complex network analysis of power grid: a case study of the West Bengal power network. In: Intelligent Computing, Networking, and Informatics, pp. 17–29. Springer, New Delhi (2014)Google Scholar
  28. 28.
    Das, H., Mishra, S.K., Roy, D.S.: The topological structure of the Odisha power grid: a complex network analysis. IJMCA 1(1), 012–016 (2013)Google Scholar
  29. 29.
    Kar, I., Parida, R.R., Das, H.: Energy aware scheduling using genetic algorithm in cloud data centers. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 3545–3550. IEEE, Mar 2016Google Scholar
  30. 30.
    Das, H., Roy, D.S.: A grid computing service for power system monitoring. Int. J. Comput. Appl. 62(20) (2013)Google Scholar
  31. 31.
    Das, H., Jena, A.K., Rath, P.K., Muduli, B., Das, S.R.: Grid computing-based performance analysis of power system: a graph theoretic approach. In: Intelligent Computing, Communication and Devices, pp. 259–266. Springer, New Delhi (2015)Google Scholar
  32. 32.
    He, L., Yue, P., Di, L., Zhang, M., Hu, L.: Adding geospatial data provenance into SDI—a service-oriented approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 926–936 (2015)CrossRefGoogle Scholar
  33. 33.
    Idrees, M.O.I.: Challenges in coastal spatial data infrastructure implementation: a review. S. Afr. J. Geomatics 4, 369–383 (2015)CrossRefGoogle Scholar
  34. 34.
    Internet-1. Accessed 23 Jan 2018
  35. 35.
    Internet-2. Accessed 23 Jan 2018
  36. 36.
    Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods: review and analysis (2017). arXiv:1709.08439
  37. 37.
    Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software development in startup companies: the greenfield startup model. IEEE Trans. Softw. Eng. 42(6), 585–604 (2016)Google Scholar
  38. 38.
    Internet-3. Accessed 23 Jan 2017
  39. 39.
    Internet-4. Accessed 12 Oct 2017
  40. 40.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rabindra Kumar Barik
    • 1
  • Meenakshi Kandpal
    • 2
  • Harishchandra Dubey
    • 3
  • Vinay Kumar
    • 4
  • Himansu Das
    • 2
  1. 1.School of Computer ApplicationsKIIT Deemed to be UniversityBhubaneswarIndia
  2. 2.School of Computer EngineeringKIIT Deemed to be UniversityBhubaneswarIndia
  3. 3.University of Texas at DallasRichardsonUSA
  4. 4.Visvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations