Advertisement

Big Data Scientific Workflows in the Cloud: Challenges and Future Prospects

  • Samiya KhanEmail author
  • Syed Arshad Ali
  • Nabeela Hasan
  • Kashish Ara Shakil
  • Mansaf Alam
Chapter
Part of the Studies in Big Data book series (SBD, volume 49)

Abstract

The concept of workflows was implemented to mitigate the complexities involved in tasks related to scientific computing and business analytics. With time, they have found applications in many diverse fields and domains. Handling big data has given rise to many other issues like growing computing complexity, increasing data size, provisioning of resources and the need for such systems to enable working together of heterogeneous systems. As a result, traditional systems are deemed obsolete for this purpose. To meet the variable resource requirements, cloud has emerged as an ostensible solution. Execution and deployment of big data scientific workflows in the cloud is an area that requires research attention before a synergistic model for the same can be presented. This paper identifies open research problems associated with this domain, giving insights on specific issues like workflow scheduling and execution and deployment of big data scientific workflows in a multi-site cloud environment.

Keywords

Scientific workflows SWfMS Big data Cloud computing Workflow scheduling Multisite cloud 

References

  1. 1.
    Gao, S., Li, L., Goodchild, M.F.: A scalable geoprocessing workflow for big geo-data analysis and optimized geospatial feature conflation based on Hadoop. In: CyberGIS All Hands Meeting (CyberGIS AHM’13) (2013)Google Scholar
  2. 2.
    Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J.: On the use of cloud computing for scientific workflows. In: IEEE Fourth International Conference on eScience, 2008, eScience’08, pp. 640–645. IEEE (2008)Google Scholar
  3. 3.
    Kashyap, H., Ahmed, H.A., Hoque, N., Roy, S., Bhattacharyya, D.K.: Big data analytics in bioinformatics: a machine learning perspective. arXiv:1506.05101 (2015)
  4. 4.
    IDC. EMC Digital Universe with Research & Analysis. EMC.com. https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm. Accessed 12 March 2018
  5. 5.
    Das, H., Naik, B., Behera, H.S.: Classification of diabetes mellitus disease (DMD): a data mining (DM) approach. In: Progress in Computing, Analytics and Networking, pp. 539–549. Springer, Singapore (2018)Google Scholar
  6. 6.
    Sahani, R., Rout, C., Badajena, J.C., Jena, A.K., Das, H.: Classification of intrusion detection using data mining techniques. In: Progress in Computing, Analytics and Networking, pp. 753–764. Springer, Singapore (2018)Google Scholar
  7. 7.
    Mishra, B.S.P., Das, H., Dehuri, S., Jagadev, A.K.: Cloud Computing for Optimization: Foundations, Applications, and Challenges, vol. 39. Springer (2018)Google Scholar
  8. 8.
    Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.): Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2017, vol. 710. Springer (2018)Google Scholar
  9. 9.
    Khan, S., Shakil, K.A., Alam, M.: Cloud-based big data analytics—a survey of current research and future directions. In: Big Data Analytics, pp. 595–604. Springer, Singapore (2018)Google Scholar
  10. 10.
    Panigrahi, C.R., Tiwary, M., Pati, B., Das, H.: Big data and cyber foraging: future scope and challenges. In: Techniques and Environments for Big Data Analysis, pp. 75–100. Springer, Cham (2016)Google Scholar
  11. 11.
    Barik, R.K., Dubey, H., Misra, C., Borthakur, D., Constant, N., Sasane, S.A., Mankodiya, K.: Fog assisted cloud computing in era of Big Data and Internet-of-Things: systems, architectures, and applications. In: Cloud Computing for Optimization: Foundations, Applications, and Challenges, pp. 367–394. Springer, Cham (2018)Google Scholar
  12. 12.
    Barik, R.K., Tripathi, A., Dubey, H., Lenka, R.K., Pratik, T., Sharma, S., Das, H.: Mistgis: optimizing geospatial DATA analysis using mist computing. In: Progress in Computing, Analytics and Networking, pp. 733–742. Springer, Singapore (2018)Google Scholar
  13. 13.
    Reddy, K.H.K., Das, H., Roy, D.S.: A Data Aware Scheme for Scheduling Big-Data Applications with SAVANNA Hadoop. Futures of Network. CRC Press (2017)Google Scholar
  14. 14.
    Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow management. J. Grid Comput. 13(4), 457–493 (2015)CrossRefGoogle Scholar
  15. 15.
    Li, X., Song, J., Huang, B.: A scientific workflow management system architecture and its scheduling based on cloud service platform for manufacturing big data analytics. Int. J. Adv. Manuf. Technol. 84(1–4), 119–131 (2016)CrossRefGoogle Scholar
  16. 16.
    Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: an overview of workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540 (2009)CrossRefGoogle Scholar
  17. 17.
    John, S., Mohamed, M.: A network performance aware QoS based workflow scheduling for grid services. Int. Arab J. Inf. Technol. (2016)Google Scholar
  18. 18.
    Bux, M., Leser, U.: Parallelization in scientific workflow management systems. arXiv:1303.7195 (2013)
  19. 19.
    Chen, W., Deelman, E.: Partitioning and scheduling workflows across multiple sites with storage constraints. In: International Conference on Parallel Processing and Applied Mathematics, pp. 11–20. Springer, Berlin, Heidelberg (2011)Google Scholar
  20. 20.
    Görlach, K., Sonntag, M., Karastoyanova, D., Leymann, F., Reiter, M.: Conventional workflow technology for scientific simulation. In: Guide to e-Science, pp. 323–352. Springer, London (2011)Google Scholar
  21. 21.
    Zhao, Y., Hategan, M., Clifford, B., Foster, I., Laszewski, G.V., Nefedova, V., Raicu, I., Stef-Praun, T., Wilde, M.: Swift: fast, reliable, loosely coupled parallel computation. In: 2007 IEEE Congress on Services, pp. 199–206. IEEE (2007)Google Scholar
  22. 22.
    Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R., et al.: Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 46, 17–35 (2015)CrossRefGoogle Scholar
  23. 23.
    Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn, T., Goble, C.: Taverna, reloaded. In: International Conference on Scientific and Statistical Database Management, pp. 471–481. Springer, Berlin, Heidelberg (2010)Google Scholar
  24. 24.
    Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: 16th International Conference on Scientific and Statistical Database Management, 2004. Proceedings, pp. 423–424. IEEE (2004)Google Scholar
  25. 25.
    Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), R86 (2010)CrossRefGoogle Scholar
  26. 26.
    Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: An algebraic approach for data-centric scientific workflows. Proc. VLDB Endow. 4(12), 1328–1339 (2011)Google Scholar
  27. 27.
    Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Podlipnig, S., et al.: Askalon: a development and grid computing environment for scientific workflows. In: Workflows for e-Science, pp. 450–471. Springer, London (2007)Google Scholar
  28. 28.
    Curcin, V., Ghanem, M.: Scientific workflow systems-can one size fit all? In: Cairo International Biomedical Engineering Conference, 2008, CIBEC 2008, pp. 1–9. IEEE (2008)Google Scholar
  29. 29.
    Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K., Marton, I.: WS-PGRADE/gUSE generic DCI gateway framework for a large variety of user communities. J. Grid Comput. 10(4), 601–630 (2012)CrossRefGoogle Scholar
  30. 30.
    Yildiz, U., Guabtni, A., Ngu, A.H.: Business versus scientific workflows: a comparative study. In: 2009 World Conference on In Services-I, pp. 340–343. IEEE (2009)Google Scholar
  31. 31.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)CrossRefGoogle Scholar
  32. 32.
    Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the Kepler scientific workflow system. In: International Provenance and Annotation Workshop, pp. 118–132. Springer, Berlin, Heidelberg (2006)Google Scholar
  33. 33.
    Ganga, K., Karthik, S.: A fault tolerant approach in scientific workflow systems based on cloud computing. In: 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME), pp. 387–390. IEEE (2013)Google Scholar
  34. 34.
    Ostermann, S., Prodan, R., Fahringer, T.: Extending grids with cloud resource management for scientific computing. In: 10th IEEE/ACM International Conference on Grid Computing, 2009, pp. 42–49. IEEE (2009)Google Scholar
  35. 35.
    Sarkhel, P., Das, H., Vashishtha, L.K.: Task-scheduling algorithms in cloud environment. In: Computational Intelligence in Data Mining, pp. 553–562. Springer, Singapore (2017)Google Scholar
  36. 36.
    De AR Gonçalves, J.C., de Oliveira, D., Ocaña, K.A., Ogasawara, E., Mattoso, M.: Using domain-specific data to enhance scientific workflow steering queries. In: International Provenance and Annotation Workshop, pp. 152–167. Springer, Berlin, Heidelberg (2012)Google Scholar
  37. 37.
    Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. J. Grid Comput. 3(3–4), 171–200 (2005)CrossRefGoogle Scholar
  38. 38.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurr. Comput. Pract. Exp. 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  39. 39.
    Wang, J., Altintas, I.: Early cloud experiences with the Kepler scientific workflow system. Procedia Comput. Sci. 9, 1630–1634 (2012)CrossRefGoogle Scholar
  40. 40.
    Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V.: Provenance trails in the wings/Pegasus system. Concurr. Comput. Pract. Exp. 20(5), 587–597 (2008)CrossRefGoogle Scholar
  41. 41.
    Mangala, N., Ch, J., Shashi, S., Subrata, C.: Galaxy workflow integration on Garuda grid. In: IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 194–196 (2012)Google Scholar
  42. 42.
    Mattoso, M., Werner, C., Travassos, G.H., Braganholo, V., Ogasawara, E., Oliveira, D., Cruz, S., Martinho, W., Murta, L.: Towards supporting the life cycle of large scale scientific experiments. Int. J. Bus. Process Integr. Manag. 5(1), 79–92 (2010)CrossRefGoogle Scholar
  43. 43.
    Terstyanszky, G., Kukla, T., Kiss, T., Kacsuk, P., Balaskó, Á., Farkas, Z.: Enabling scientific workflow sharing through coarse-grained interoperability. Future Gener. Comput. Syst. 37, 46–59 (2014)CrossRefGoogle Scholar
  44. 44.
    Kacsuk, P.: Science Gateways for Distributed Computing Infrastructures. Springer International Publishing (2014).  https://doi.org/10.1007/978-3-319-11268-8_10
  45. 45.
    Bergmann, R., Gil, Y.: Retrieval of semantic workflows with knowledge intensive similarity measures. In: International Conference on Case-Based Reasoning, pp. 17–31. Springer, Berlin, Heidelberg (2011)Google Scholar
  46. 46.
    Liu, B., Sotomayor, B., Madduri, R., Chard, K., Foster, I.: Deploying bioinformatics workflows on clouds with galaxy and Globus provision. In: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp. 1087–1095 (2012)Google Scholar
  47. 47.
    Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision, hype, and reality for delivering it services as computing utilities. In: 10th IEEE International Conference on High Performance Computing and Communications, pp. 5–13 (2008)Google Scholar
  48. 48.
    Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode, M., Silva, F., Al-Shkarchi, E., Mehta, G.: A general approach to real-time workflow monitoring. In: High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, pp. 108–118 (2012)Google Scholar
  49. 49.
    Yuan, D., Cui, L., Liu, X.: Cloud data management for scientific workflows: research issues, methodologies, and state-of-the-art. In: 2014 10th International Conference on Semantics, Knowledge and Grids (SKG), pp. 21–28 (2014)Google Scholar
  50. 50.
    Oinn, T., Li, P., Kell, D.B., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R., Turi, D., Zhao, J.: Taverna/my Grid: aligning a workflow system with the life sciences community. In: Workflows for e-Science, pp. 300–319. Springer, London (2007)Google Scholar
  51. 51.
    Kozlovszky, M., Karóczkai, K., Márton, I., Kacsuk, P., Gottdank, T.: DCI bridge: executing Ws-pgrade workflows in distributed computing infrastructures. In: Science Gateways for Distributed Computing Infrastructures, pp. 51–67. Springer, Cham (2014)Google Scholar
  52. 52.
    Litzkow, M.J., Livny, M., Mutka, M.W.: Condor—a hunter of idle workstations. In: Distributed Computing Systems, 8th International Conference on Semantics, Knowledge and Grids (SKG), pp. 104–111 (1988)Google Scholar
  53. 53.
    Brandic, I., Dustdar, S.: Grid vs Cloud—a technology comparison. IT-Inf. Technol. Methoden und innovative Anwendungen der Informatik und Informationstechnik 53(4), 173–179 (2011)Google Scholar
  54. 54.
    Ramakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellariou, R., Vahi, K., Blackburn, K., Meyers, D., Samidi, M.: Scheduling data-intensive workflows onto storage-constrained distributed resources. In: Seventh IEEE International Symposium on Cluster Computing and the Grid, 2007, pp. 401–409. IEEE (2007)Google Scholar
  55. 55.
    Keahey, K., Freeman, T.: Contextualization: providing one-click virtual clusters. In: IEEE Fourth International Conference on eScience, 2008, eScience’08, pp. 301–308. IEEE (2008)Google Scholar
  56. 56.
    Vöckler, J.S., Juve, G., Deelman, E., Rynge, M., Berriman, B.: Experiences using cloud computing for a scientific workflow application. In: Proceedings of the 2nd International Workshop on Scientific Cloud Computing, pp. 15–24. ACM (2011)Google Scholar
  57. 57.
    Talia, D.: Clouds for Scalable Big Data Analytics. IEEE Computer Society. http://scholar.google.co.in/scholar_url?url=http://xa.yimg.com/kq/groups/16253916/1476905727/name/06515548.pdf&hl=en&sa=X&scisig=AAGBfm12aY-Nbu37oZYRuEqeqsdslzKfBQ&nossl=1&oi=scholarr&ved=0CCYQgAMoADAAahUKEwi3k4Hymv7GAhUHUKYKHdToBCM. Accessed 16 March 2018Google Scholar
  58. 58.
    Lin, C., Lu, S., Fei, X., Chebotko, A., Pai, D., Lai, D., Fotouhi, F., Hua, J.: A reference architecture for scientific workflow management systems and the VIEW SOA solution. IEEE Trans. Serv. Comput. 2(1), 79–92 (2009)CrossRefGoogle Scholar
  59. 59.
    Zhao, Y., Li, Y., Lu, S., Raicu, I., Lin, C.: Devising a cloud scientific workflow platform for big data. In: 2014 IEEE World Congress on Services (SERVICES), pp. 393–401. IEEE (2014)Google Scholar
  60. 60.
    Juve, G., Deelman, E.: Scientific workflows in the cloud. In: Grids, Clouds and Virtualization, pp. 71–91. Springer, London (2011)Google Scholar
  61. 61.
    Bell, G., Hey, T., Szalay, A.: Beyond the data deluge. Science 323(5919), 1297–1298 (2009)CrossRefGoogle Scholar
  62. 62.
    Das, H., Jena, A.K., Badajena, J.C., Pradhan, C., Barik, R.K.: Resource allocation in cooperative cloud environments. In: Progress in Computing, Analytics and Networking, pp. 825–841. Springer, Singapore (2018)Google Scholar
  63. 63.
    Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms for cost-and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds. Future Gener. Comput. Syst. 48, 1–18 (2015)CrossRefGoogle Scholar
  64. 64.
    Kwok, Y.K., Ahmad, I.: Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506–521 (1996)CrossRefGoogle Scholar
  65. 65.
    Juve, G., Deelman, E.: Wrangler: virtual cluster provisioning for the cloud. In: Proceedings of the 20th International Symposium on High Performance Distributed Computing, pp. 277–278. ACM (2011)Google Scholar
  66. 66.
    Barolli, L., Chen, X., Xhafa, F.: Advances on cloud services and cloud computing. Concurr. Comput. Pract. Exp. 27(8), 1985–1987 (2015)CrossRefGoogle Scholar
  67. 67.
    Ali, S.A., Alam, M.: A relative study of task scheduling algorithms in cloud computing environment. In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp. 105–111. IEEE (2016)Google Scholar
  68. 68.
    Rodriguez, M.A., Buyya, R.: Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds. IEEE Trans. Cloud Comput. 2(2), 222–235 (2014)CrossRefGoogle Scholar
  69. 69.
    Bux, M., Brandt, J., Witt, C., Dowling, J., Leser, U.: Hi-WAY: execution of scientific workflows on Hadoop YARN. In: Proceedings of the 20th International Conference on Extending Database Technology (EDBT), Venice, Italy (2017)Google Scholar
  70. 70.
    Nayak, J., Naik, B., Jena, A.K., Barik, R.K., Das, H.: Nature inspired optimizations in cloud computing: applications and challenges. In: Cloud Computing for Optimization: Foundations, Applications, and Challenges, pp. 1–26. Springer, Cham (2018)Google Scholar
  71. 71.
    Ritchie, G., Levine, J.: A fast, effective local search for scheduling independent jobs in heterogeneous computing environments (2003)Google Scholar
  72. 72.
    Falzon, G., Li, M.: Enhancing genetic algorithms for dependent job scheduling in grid computing environments. J. Supercomput. 62(1), 290–314 (2012)CrossRefGoogle Scholar
  73. 73.
    Grosan, C., Abraham, A., Helvik, B.: Multiobjective evolutionary algorithms for scheduling jobs on computational grids. In: International Conference on Applied Computing, pp. 459–463 (2007)Google Scholar
  74. 74.
    Das, H., Jena, A.K., Nayak, J., Naik, B., Behera, H.S.: A novel PSO based back propagation learning-MLP (PSO-BP-MLP) for classification. In: Computational Intelligence in Data Mining, vol. 2, pp. 461–471. Springer, New Delhi (2015)Google Scholar
  75. 75.
    Gamal, A., Hamam, Y.: Task allocation for maximizing reliability of distributed systems: a simulated annealing approach. J. Parallel Distrib. Comput. 66(10), 1259–1266 (2006)zbMATHCrossRefGoogle Scholar
  76. 76.
    Filgueira, R., Ferreira da Silva, R., Krause, A., Deelman, E., Atkinson, M.: Asterism: Pegasus and dispel4py hybrid workflows for data-intensive science. In: 2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud), pp. 1–8. IEEE (2016)Google Scholar
  77. 77.
    Esteves, S., Veiga, L.: WaaS: workflow-as-a-service for the cloud with scheduling of continuous and data-intensive workflows. Comput. J. 59(3), 371–383 (2016)CrossRefGoogle Scholar
  78. 78.
    Gerlach, W., Tang, W., Keegan, K., Harrison, T., Wilke, A., Bischof, J., Dsouza, M., et al.: Skyport-container-based execution environment management for multi-cloud scientific workflows. In: 2014 5th International Workshop on Data-Intensive Computing in the Clouds (DataCloud), pp. 25–32. IEEE (2014)Google Scholar
  79. 79.
    Wang, J., Korambath, P., Altintas, I., Davis, J., Crawl, D.: Workflow as a service in the cloud: architecture and scheduling algorithms. Procedia Comput. Sci. 29, 546–556 (2014)CrossRefGoogle Scholar
  80. 80.
    Rodriguez, M.A., Buyya, R.: Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms. Future Gener. Comput. Syst. 79, 739–750 (2018)CrossRefGoogle Scholar
  81. 81.
    Kaur, P., Mehta, S.: Resource provisioning and work flow scheduling in clouds using augmented shuffled frog leaping algorithm. J. Parallel Distrib. Comput. 101, 41–50 (2017)CrossRefGoogle Scholar
  82. 82.
    Chu, S., Tsai, P., Pan, J.: Cat swarm optimization. In: Pacific Rim International Conference on Artificial Intelligence, pp. 854–858. Springer, Berlin, Heidelberg (2006)Google Scholar
  83. 83.
    Chu, S., Tsai, P.: Computational intelligence based on the behavior of cats. Int. J. Innov. Comput. Inf. Control 3(1), 163–173 (2007)Google Scholar
  84. 84.
    Sharafi, Y., Khanesar, M.A., Teshnehlab, M.: Discrete binary cat swarm optimization algorithm. In: 2013 3rd International Conference on Computer, Control & Communication (IC4), pp. 1–6. IEEE (2013)Google Scholar
  85. 85.
    Tsai, P.W., Pan, J.S., Chen, S.M., Liao, B.Y., Hao, S.P.: Parallel cat swarm optimization. In: 2008 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3328–3333. IEEE (2008)Google Scholar
  86. 86.
    Verma, A., Kaushal, S.: Cost-time efficient scheduling plan for executing workflows in the cloud. J. Grid Comput. 13(4), 495–506 (2015)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Ahmad, S.G., Liew, C.S., Munir, E.U., Ang, T.F., Khan, S.U.: A hybrid genetic algorithm for optimization of scheduling workflow applications in heterogeneous computing systems. J. Parallel Distrib. Comput. 87, 80–90 (2016)CrossRefGoogle Scholar
  88. 88.
    Tao, F., Feng, Y., Zhang, L., Liao, T.W.: CLPS-GA: A case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. Appl. Soft Comput. 19, 264–279 (2014)CrossRefGoogle Scholar
  89. 89.
    Kar, I., Parida, R.R., Das, H.: Energy aware scheduling using genetic algorithm in cloud data centers. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 3545–3550. IEEE (2016)Google Scholar
  90. 90.
    Kar, I., Das, H.: Energy aware task scheduling using genetic algorithm in cloud datacentres. Int. J. Comput. Sci. Inf. Technol. Res. 4(1), 106–111 (2016)Google Scholar
  91. 91.
    Sahoo, A.K., Das, H.: Energy efficient scheduling using DVFS technique in cloud datacenters. Int. J. Comput. Sci. Inf. Technol. Res. 4(1), 59–66 (2016)Google Scholar
  92. 92.
    Verma, A., Kaushal, S.: A hybrid multi-objective particle swarm optimization for scientific workflow scheduling. Parallel Comput. 62, 1–19 (2017)MathSciNetCrossRefGoogle Scholar
  93. 93.
    Ezzatti, P., Pedemonte, M., Martín, A.: An efficient implementation of the Min-Min heuristic. Comput. Oper. Res. 40(11), 2670–2676 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    He, X., Sun, X., Laszewski, G.V.: QoS guided min-min heuristic for grid task scheduling. J. Comput. Sci. Technol. 18(4), 442–451 (2003)zbMATHCrossRefGoogle Scholar
  95. 95.
    Singh, M., Suri, P.K.: QPS Max-Min<> Min-Min: a QoS based predictive Max-Min, Min-Min switcher algorithm for job scheduling in a grid. Inf. Technol. J. 7(8), 1176–1181 (2008)CrossRefGoogle Scholar
  96. 96.
    Tabak, E.K., Cambazoglu, B.B., Aykanat, C.: Improving the performance of independent task assignment heuristics minmin, maxmin and sufferage. IEEE Trans. Parallel Distrib. Syst. 25(5), 1244–1256 (2014)CrossRefGoogle Scholar
  97. 97.
    Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling parameter sweep applications in grid environments. In: 9th Heterogeneous Computing Workshop, 2000 (HCW 2000) Proceedings, pp. 349–363. IEEE (2000)Google Scholar
  98. 98.
    Chen, W., Zhang, J.: A set-based discrete PSO for cloud workflow scheduling with user-defined QoS constraints. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 773–778. IEEE (2012)Google Scholar
  99. 99.
    Jianfang, C., Junjie, C., Qingshan, Z.: An optimized scheduling algorithm on a cloud workflow using a discrete particle swarm. Cybern. Inf. Technol. 14(1), 25–39 (2014)MathSciNetGoogle Scholar
  100. 100.
    Bahrami, M., Bozorg-Haddad, O., Chu, X.: Cat swarm optimization (CSO) algorithm. In: Advanced Optimization by Nature-Inspired Algorithms, pp. 9–18. Springer, Singapore (2018)Google Scholar
  101. 101.
    Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38(2), 129–154 (2006)MathSciNetCrossRefGoogle Scholar
  102. 102.
    Liu, J.: Multisite management of scientific workflows in the cloud. Distributed, parallel, and cluster computing. Ph.D. dissertation, Universite de Montpellier (2016)Google Scholar
  103. 103.
    Liu, J., Pacitti, E., Valduriez, P., Oliveira, D., Mattoso, M.: Scientific workflow execution with multiple objectives in multisite clouds. In: BDA: Bases de Données Avancées (2016)Google Scholar
  104. 104.
    Pineda-Morales, L., Liu, J., Costan, A., Pacitti, E., Antoniu, G., Valduriez, P., Mattoso, M.: Managing hot metadata for scientific workflows on multisite clouds. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 390–397. IEEE (2016)Google Scholar
  105. 105.
    Tudoran, R., Costan, A., Antoniu, G.: Overflow: multi-site aware big data management for scientific workflows on clouds. IEEE Trans. Cloud Comput. 4(1), 76–89 (2016)CrossRefGoogle Scholar
  106. 106.
    Ahmad, M.K.H.: Scientific workflow execution reproducibility using cloud-aware provenance. Ph.D. dissertation, University of the West of England (UWE) (2016)Google Scholar
  107. 107.
    Jrad, F., Tao, J., Streit, A.: A broker-based framework for multi-cloud workflows. In: Proceedings of the 2013 International Workshop on Multi-cloud Applications and Federated Clouds, pp. 61–68. ACM (2013)Google Scholar
  108. 108.
    Kozlowszky, M., Karóczkai, K., Marton, A., Balasko, A., Marosi, A., Kacsuk, P.: Enabling generic distributed computing infrastructure compatibility for workflow management systems. Comput. Sci. 13(3), 61 (2012)CrossRefGoogle Scholar
  109. 109.
    Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.: Challenges and opportunities in edge computing (2016). arXiv:1609.01967
  110. 110.
    Meurisch, C., Seeliger, A., Schmidt, B., Schweizer, I., Kaup, F., Mühlhäuser, M.: Upgrading wireless home routers for enabling large-scale deployment of cloudlets. In: International Conference on Mobile Computing, Applications, and Services, pp. 12–29. Springer, Cham (2015)Google Scholar
  111. 111.
    Chen, W., Deelman, E.: Integration of workflow partitioning and resource provisioning. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012), pp. 764–768 (2012)Google Scholar
  112. 112.
    Tang, W., Jenkins, J., Meyer, F., Ross, R., Kettimuthu, R., Winkler, L., Yang, X., Lehman, T., Desai, N.: Data-aware resource scheduling for multicloud workflows: a fine-grained simulation approach. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 887–892 (2014)Google Scholar
  113. 113.
    Yin, D., Kosar, T.: A data-aware workflow scheduling algorithm for heterogeneous distributed systems. In: International Conference on High Performance Computing and Simulation (HPCS), 2011, pp. 114–120. IEEE (2011)Google Scholar
  114. 114.
    Ghafarian, T., Javadi, B.: Cloud-aware data intensive workflow scheduling on volunteer computing systems. Future Gener. Comput. Syst. 51, 87–97 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Samiya Khan
    • 1
    Email author
  • Syed Arshad Ali
    • 1
  • Nabeela Hasan
    • 1
  • Kashish Ara Shakil
    • 2
  • Mansaf Alam
    • 1
  1. 1.Department of Computer ScienceJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of Computer Science and EngineeringJamia HamdardNew DelhiIndia

Personalised recommendations