Advertisement

EST (Expressed Sequence Tag): A Technique for Identification of Plant Secondary Metabolite Genes

  • Aruna G. Joshi
  • Ashutosh R. Pathak
Chapter

Abstract

Plants contain various secondary metabolites which are synthesized as a defense mechanism, and expression of genes’ synthesizing these metabolites varies with the developmental age of plant and also between tissue to tissue. Identification of these expressed genes helps in unraveling the biosynthetic pathways of different metabolites in plants. Many molecular biology techniques can be used for identification of these expressed genes, but expressed sequence tags (ESTs) are nowadays widely used due to cost-effectiveness and efficiency as compared to other techniques. After sequencing the ESTs, databases such as NCBI, EMBL, etc. can be used for further comparison of sequences which help in identification of genes. These ESTs are an attractive tool for decoding the metabolic pathways rather than whole genome sequencing.

Keywords

cDNA Databases Expressed sequence tags mRNA Plants Secondary metabolite pathways 

References

  1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arita M (2004) The metabolic world of Escherichia coli is not small. PNAS 101(6):1543–1547PubMedCrossRefGoogle Scholar
  4. Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta 221:28–38PubMedCrossRefGoogle Scholar
  5. Baerson SR, Dayan FE, Rimando AM, Nanayakkara NPD, Liu CJ, Schroder J et al (2008) A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J Biol Chem 283(6):3231–3247PubMedCrossRefGoogle Scholar
  6. Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Go A et al (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7:246PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bedell JA, Korf I, Gish W (2000) MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics 16:1040–1041PubMedCrossRefGoogle Scholar
  8. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36PubMedCrossRefGoogle Scholar
  9. Bertea CM, Voster A, Verstappen FWA, Vei MM, Beekwilder J, Bouwmeester HJ (2006) Isoprenoid biosynthesis in Artemisia annua: Cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys 448:3–12PubMedCrossRefGoogle Scholar
  10. Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y et al (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 149(1):499–514PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391(6666):485–488PubMedCrossRefGoogle Scholar
  12. Bonaldo MF, Lennon G, Soares MB (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 6:791–806PubMedCrossRefGoogle Scholar
  13. Brandle JE, Richman A, Swanson AK, Chapman BP (2002) Leaf ESTs from Stevia rebaudiana: a resource for gene discovery in diterpene synthesis. Plant Mol Biol 50:613–622PubMedCrossRefGoogle Scholar
  14. Burke J, Davison D, Hide W (1999) d2_cluster: a validated method for clustering EST and full-length cDNAsequences. Genome Res 9:1135–1142PubMedPubMedCentralCrossRefGoogle Scholar
  15. Channeliere S, Riviere S, Scalliet G, Szecsi J, Jullien F, Dolle C et al (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38PubMedCrossRefGoogle Scholar
  16. Chatzopoulou FM, Makris AM, Argiriou A, Degenhardt J, Kanellis AK (2010) EST analysis and annotation of transcripts derived from a trichome-specific cDNA library from Salvia fruticosa. Plant Cell Rep 29:523–534PubMedCrossRefGoogle Scholar
  17. Chen JJW, Wu R, Yang PC, Huang JY, Sher YP, Han MH et al (1998) Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51:313–324PubMedCrossRefGoogle Scholar
  18. Chen L, Zhao LP, Gao QK (2005) Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis). Plant Sci 168:359–363CrossRefGoogle Scholar
  19. Chen MS, Wang GJ, Wang RL, Wang J, Song SQ, Xu ZF (2011a) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181:696–700PubMedCrossRefGoogle Scholar
  20. Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y et al (2011b) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30:1593–1601PubMedCrossRefGoogle Scholar
  21. Chen YR, Lee YR, Wang SY, Chang ST, Shaw JF, Chu FH (2004) Establishment of expressed sequence tags from Taiwania (Taiwania cryptomerioides Hayata) seedling cDNA. Plant Sci 167:955–957CrossRefGoogle Scholar
  22. Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ et al (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566CrossRefGoogle Scholar
  23. Christopher ME, Miranda M, Major IT, Constabel CP (2004) Gene expression profiling of systemically wound-induced defences in hybrid poplar. Planta 219:936–947PubMedCrossRefGoogle Scholar
  24. Costa GGL, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS, de Campos-Leite L et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462PubMedPubMedCentralCrossRefGoogle Scholar
  25. Costa MA, Collins RE, Anterola AM, Cochrane FC, Davin LB, Lewis NG (2003) An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64:1097–1112PubMedCrossRefGoogle Scholar
  26. Covitz PA, Smith LS, Long SR (1998) Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA Library. Plant Physiol 117:1325–1332PubMedPubMedCentralCrossRefGoogle Scholar
  27. da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H et al (2005) Characterizing the grape transcriptome. analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dai X, Wang G, Yang DS, Tang Y, Broun P, Marks DM et al (2010) TrichOME: A comparative omics database for plant trichomes. Plant Physiol 152:44–54PubMedPubMedCentralCrossRefGoogle Scholar
  29. Desgagné-Penix I, Khan MF, Schriemer DC, Cram D, Nowak J, Facchini PJ (2010) Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 10:252PubMedPubMedCentralCrossRefGoogle Scholar
  30. Devi BSR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S et al (2012) Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ J Plant Physiol 59(3):318–325CrossRefGoogle Scholar
  31. Dixon RA, Strack D (2003) Phytochemistry meets genome analysis and beyond. Phytochemistry 62:815–816PubMedCrossRefGoogle Scholar
  32. Duraisamy GS, Mishra AK, Jakse J, Matousek J (2015) Computational prediction, target identification and experimental validation of mirnas from expressed sequence tags in Cannabis sativa L. Res Rev J Bot Sci 4(2):32–42Google Scholar
  33. Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:D959–D965PubMedCrossRefGoogle Scholar
  34. Endo M, Hakozaki H, Kokubun T, Masuko H, Takahata Y, Tsuchiya T (2002) Generation of 919 expressed sequence tags from immature flower buds and gene expression analysis using expressed sequence tags in the model plant Lotus japonicus. Genes Genet Syst 77(4):277–282PubMedCrossRefGoogle Scholar
  35. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194PubMedCrossRefGoogle Scholar
  36. Ewing R, Kahla A, Poirot O, Lopez F, Audic S, Claverie J (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res 9:950–959PubMedPubMedCentralCrossRefGoogle Scholar
  37. Falara V, Fotopoulos V, Margaritis T, Anastasaki T, Pateraki I, Bosabalidis AM et al (2008) Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Citrus creticus subsp. creticus. Plant Mol Biol 68:633–651PubMedCrossRefGoogle Scholar
  38. França SC, Roberto PG, Marins MA, Puga RD, Rodrigues A, Pereira JO (2001) Biosynthesis of secondary metabolites in sugarcane. Genet Mol Biol 24(1–4):243–250CrossRefGoogle Scholar
  39. Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J et al (2005) Metabolic, genomic and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methyl ketones. Plant Cell 17:1252–1267PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fugate KK, Fajardo D, Schlautman B, Ferrareze JP, Bolton MD, Campbell LG et al (2014) Generation and characterization of a sugar beet transcriptome and transcript-based SSR markers. Plant Genome 7(2):1–13CrossRefGoogle Scholar
  41. Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E et al (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gao ZM, Li CL, Peng ZH (2011) Generation and analysis of expressed sequence tags from a normalized cDNA library of young leaf from Ma bamboo (Dendrocalamus latiflorus Munro). Plant Cell Rep 30:2045–2057PubMedCrossRefGoogle Scholar
  43. Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G et al (2002) Rose scent: Genomics approach to discovering novel floral fragrance–related genes. Plant Cell 14:2325–2338PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hatey F, Tosser-Klopp G, Clouscard-Martinato C, Mulsant P, Gasser F (1998) Expressed sequence tags for genes: a review. Genet Sel Evol 30:521–541PubMedCentralCrossRefPubMedGoogle Scholar
  45. Hays DB, Skinner DZ (2001) Development of an expressed sequence tag (EST) library for Medicago sativa. Plant Sci 161:517–526CrossRefGoogle Scholar
  46. He XZ, Blount JW, Ge S, Tang Y, Dixon RA (2011) A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata). Planta 233:843–855PubMedCrossRefGoogle Scholar
  47. Hofte H, Desprez T, Amselem J, Chiapello H, Rouze P, Caboche M et al (1994) An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J 4:1051–1061CrossRefGoogle Scholar
  48. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedPubMedCentralCrossRefGoogle Scholar
  49. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ et al (2003) Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 22:224–230PubMedCrossRefGoogle Scholar
  51. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334CrossRefGoogle Scholar
  52. Kalra S, Puniya BL, Kulshreshtha D, Kumar S, Kaur J, Ramachandran S. De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. PLoS One 2013;8(12):e 83336PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D3540–DD357CrossRefGoogle Scholar
  54. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kim MK, Lee BS, In JG, Sun H, Yoon JH, Yang DC (2006) Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Rep 25:599–606PubMedCrossRefGoogle Scholar
  56. Kim OT, Um Y, Jin ML, Kim YC, Bang KH, Hyun DY et al (2014) Analysis of expressed sequence tags from Centella asiatica (L.) Urban hairy roots elicited by methyl jasmonate to discover genes related to cytochrome P450s and glucosyltransferases. Plant Biotechnol Rep 8:211–220CrossRefGoogle Scholar
  57. Kore-eda S, Cushman MA, Akselrod I, Bufford D, Fredrickson M, Clark E et al (2004) Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341:83–92PubMedCrossRefGoogle Scholar
  58. Kutchan T, Dixon RA (2005) Secondary metabolism: nature, chemical reservoir under deconvolution. Curr Opin Plant Biol 8:227–229CrossRefGoogle Scholar
  59. Lane A, Boecklemann A, Woronuk GN, Sarker L, Mahmoud SS (2010) A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231:835–845PubMedCrossRefGoogle Scholar
  60. Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. PNAS 97(6):2934–2939PubMedCrossRefGoogle Scholar
  61. Lee CH, Chan MH, Wang YN, Chu FH (2006) Gene Investigation into the Inner bark of Taiwania (Taiwania cryptomerioides). Bot Stud 47:111–118Google Scholar
  62. Lee Y, Tsai J, Sunkara S, Karamycheva S, Pertea G, Sultana R (2005) The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res 33:D71–D74PubMedCrossRefGoogle Scholar
  63. Li C, Zhu Y, Guo X, Sun C, Luo H, Song J et al (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 14:245PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li R, Links MG, Gjetvaj B, Sharpe A, Hannoufa A (2008) Development of an Adonis aestivalis expressed sequence tag population as a resource for genes of the carotenoid pathway. Genome 51(11):888–896PubMedCrossRefGoogle Scholar
  65. Li Y, Luo HM, Sun C, Song JY, Sun YZ, Wu Q et al (2010) EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics 11:268PubMedPubMedCentralCrossRefGoogle Scholar
  66. Livingstone JM, Seguin P, Stromvik MV (2009) An in silico study of the genes for the isoflavonoid pathway enzymes in soybean reveals novel expressed homologues. Can J Plant Sci 90(4):453–469CrossRefGoogle Scholar
  67. Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431PubMedCrossRefGoogle Scholar
  68. Lu C, Wallis JG, Browse J (2007) An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library. BMC Plant Biol 7:42PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lucheta AR, Silva-Pinhati ACO, Basílio-Palmieri AC, Berger IJ, Freitas-Astúa J, Crstofani M (2007) An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis. Genet Mol Biol 30(Suppl 3):819–831CrossRefGoogle Scholar
  70. Luo H, Li Y, Sun C, Wu Q, Song J, Sun Y et al (2010a) Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biol 10:209PubMedPubMedCentralCrossRefGoogle Scholar
  71. Luo H, Sun C, Li Y, Wu Q, Song J, Wang D et al (2010b) Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. Physiol Plant 139:1–12PubMedCrossRefGoogle Scholar
  72. Masoudi-Nejad A, Goto S, Jauregui R, Ito M, Kawashima S, Moriya Y et al (2007) EGENES: Transcriptome based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol 144:857–866PubMedPubMedCentralCrossRefGoogle Scholar
  73. Masoudi-Nejad A, Jauregui R, Kawashima S, Goto S, Kanehisa M, Endo TR (2004). The kingdom of plantae EST indices: a resource for plant genomics community. Genome informatics: The 15th International Conference on Genome Informatics, Pacifico Yokohama, Japan, 16–18 December 2004, p 102Google Scholar
  74. Masoudi-Nejad A, Tonomura K, Kawashima S, Itoh M, Kanehisa M, Endo T et al (2006) EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 34:W459–W462PubMedPubMedCentralCrossRefGoogle Scholar
  75. McCombie WR, Adams MD, Kelley JM, FitzGerald MG, Utterback TR, Khan M et al (1992) Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nat Genet 1:124–131PubMedCrossRefGoogle Scholar
  76. Mishra RK, Gangadhar BH, Yu JW, Kim DH, Park SW (2011) Development and characterization of EST based SSR markers in Madagascar periwinkle (Catharanthus roseus) and their transferability in other medicinal plants. POJ 4(3):154–162Google Scholar
  77. Misra RC, Maiti P, Chanotiya CS, Shanker K, Ghosh S (2013) Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant Physiol 164(2):1028–1044PubMedPubMedCentralCrossRefGoogle Scholar
  78. Moriya Y, Itoh M, Okuda S, Kanehisa M (2005) KAAS: KEGG automatic annotation server. Genome informatics: The 16th International Conference on Genome Informatics, Pacifico Yokohama. Japan, 19–21 December 2005, p 005–1Google Scholar
  79. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151PubMedCrossRefGoogle Scholar
  80. Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542PubMedPubMedCentralCrossRefGoogle Scholar
  81. Murataa J, Bienzleb D, Brandlec JE, Sensend CW, De Luca V (2006) Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus). FEBS Lett 580:4501–4507CrossRefGoogle Scholar
  82. Naganeeswaran SA, Subbian EA, Ramaswamy M (2012) Analysis of expressed sequence tags (ESTs) from cocoa (Theobroma cacao L) upon infection with Phytophthora megakarya. Bioinformation 8(2):65–68PubMedPubMedCentralCrossRefGoogle Scholar
  83. Nagaraj SH, Gasser RB, Ranganathan S (2006) A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 8(1):6–21PubMedCrossRefGoogle Scholar
  84. Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF (2008) EST analysis of hop glandular trichomes identifies an O-Methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:186–200PubMedPubMedCentralCrossRefGoogle Scholar
  85. Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA et al (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11:606PubMedPubMedCentralCrossRefGoogle Scholar
  86. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL et al (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nishiyama T, Fujita T, Shin IT, Seki M, Nishide H, Uchiyama I et al (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci U S A 100:8007–8012PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ogata Y, Suzuki H (2011) Plant expressed sequence tags databases: practical uses and the improvement of their searches using network module analysis. Plant Biotechnol 28:351–360CrossRefGoogle Scholar
  89. Ogihara Y, Mochida K, Nemoto Y, Murai K, Yamazaki Y, Shin IT et al (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J 33:1001–1011PubMedCrossRefGoogle Scholar
  90. Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228PubMedCrossRefGoogle Scholar
  91. Park JS, Kim JB, Hahn BS, Kim KH, Ha SH, Kim JB et al (2004) EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci 166:953–961CrossRefGoogle Scholar
  92. Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. In: Parkinson J (ed) Expressed sequence tags (ESTs): generation and analysis, vol 533. Humana Press, New York, pp 1–12CrossRefGoogle Scholar
  93. Parkinson J, Blaxter M (2004) Expressed sequence tags: analysis and annotation. Methods Mol Biol 270:93–126PubMedGoogle Scholar
  94. Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX et al (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540PubMedPubMedCentralCrossRefGoogle Scholar
  95. Peng FY, Reid KE, Liao N, Schlosser J, Lijavetzky D, Holt R et al (2007) Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Gene 402:40–50PubMedCrossRefGoogle Scholar
  96. Phred, Phrap and Consed (2006) Laboratory of Phil Green, Department of Genome Sciences, University of Washington. http://www.phrap.org. Accessed 17 Feb 2006
  97. Phukon M, Namdev R, Deka D, Modi MK, Sen P (2012) Construction of cDNA library and preliminary analysis of expressed sequence tags from tea plant (Camellia sinensis (L) O. Kuntze). Gene 506:202–206PubMedCrossRefGoogle Scholar
  98. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5(10):439–445PubMedCrossRefGoogle Scholar
  99. Pienkny S, Brandt W, Schmidt J, Kramell R, Ziegler J (2009) Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L). Plant J 60:56–67PubMedCrossRefGoogle Scholar
  100. Priya A, Tripathi H, Yadav DK, Khan F, Gupta V, Shukla RK et al (2012) Functional annotation of expressed sequence tags of Papaver somniferum. Plant Omics J 5(3):223–230Google Scholar
  101. Ptitsyn A, Hide W (2005) CLU: a new algorithm for EST clustering. BMC Bioinformatics 6(Suppl 2):S3PubMedPubMedCentralCrossRefGoogle Scholar
  102. Putney SD, Herlihy WC, Schimmel P (1983) A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing. Nature 302:718–721PubMedCrossRefGoogle Scholar
  103. Richman A, Swanson A, Humphrey T, Chapman R, McGarvey B, Pocs R et al (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J 41:56–67PubMedCrossRefGoogle Scholar
  104. Rischer H, Orešič M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W et al (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. PNAS 103:5614–5619PubMedCrossRefGoogle Scholar
  105. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I et al (2012) Flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via expressed sequences tag (EST) analysis. Int J Mol Sci 13:2692–2706PubMedPubMedCentralCrossRefGoogle Scholar
  106. Roy S, Chauhan R, Maheshwari N, Gupta S, Gupta DK, Sharma A (2011) In silico approaches in comparative genomics, structure prediction and functional characterization of secondary metabolite proteins of Mentha sp. Plant Omics J 4(7):354–363Google Scholar
  107. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2010) Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 37:3465–3472PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sathiyamoorthy S, In JG, Lee BS, Kwon WS, Yang DU, Kim JH et al (2011) In silico analysis for expressed sequence tags from embryogenic callus and flower buds of Panax ginseng C. A. Meyer. J Ginseng Res 35(1):21–30CrossRefGoogle Scholar
  109. Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science 270:467–470PubMedCrossRefPubMedCentralGoogle Scholar
  110. Schilmiller AL, Miner DP, Larson M, McDowell E, Gang DR, Wilkerson C et al (2010) Studies of a biochemical factory: Tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiol 153:1212–1223PubMedPubMedCentralCrossRefGoogle Scholar
  111. Senthil K, Wasnik NG, Kim YJ, Yang DC (2010) Generation and analysis of expressed sequence tags from leaf and root of Withania somnifera (Ashwagandha). Mol Biol Rep 37:893–902PubMedCrossRefGoogle Scholar
  112. Shelton D, Leach D, Baverstock P, Henry R (2002) Isolation of genes involved in secondary metabolism from Melaleuca alternifolia (Cheel) using expressed sequence tags (ESTs). Plant Sci 162:9–15CrossRefGoogle Scholar
  113. Shukla AK, Shasany AK, Gupta MM, Khanuja SPS (2006) Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J Exp Bot 57(14):3921–3932PubMedCrossRefGoogle Scholar
  114. Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D et al (2009) Short-read sequencing technologies for transcriptional analyses. Annu Rev Plant Biol 60:305–333PubMedCrossRefGoogle Scholar
  115. Soares VLF, Rodrigues SM, de Oliveira TM, de Queiroz TO, Lima LS, Hora-Junior BT et al (2011) Unraveling new genes associated with seed development and metabolism in Bixa orellana L. by expressed sequence tag (EST) analysis. Mol Biol Rep 38:1329–1340PubMedCrossRefGoogle Scholar
  116. Somerville C, Somerville S (1999) Plant functional genomics. Science 285:380–383PubMedCrossRefGoogle Scholar
  117. Spiering MJ, Urban LA, Nuss DL, Gopalan V, Stoltzfus A, Eisenstein E (2011) Gene identification in black cohosh (Actaea racemosa L.): expressed sequence tag profiling and genetic screening yields candidate genes for production of bioactive secondary metabolites. Plant Cell Rep 30:613–629PubMedCrossRefGoogle Scholar
  118. Srivastava AC, Palanichelvam K, Ma J, Steele J, Blancaflor EB, Tang Y (2010) Collection and analysis of expressed sequence tags derived from laser capture microdissected switchgrass (Panicum virgatum L. Alamo) vascular tissues. Bioenergy Res 3(3):278–294CrossRefGoogle Scholar
  119. Suh MC, Kim MJ, Hur CG, Bae JM, Park YI, Chung CH et al (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52:1107–1123PubMedCrossRefGoogle Scholar
  120. Sun C, Sun Y, Song J, Li C, Li X, Zhang X et al (2011) Discovery of genes related to steroidal alkaloid biosynthesis in Fritillaria cirrhosa by generating and mining a dataset of expressed sequence tags (ESTs). J Med Plant Res 5(21):5307–5314Google Scholar
  121. Suzuki H, Achnine L, Xu R, Matsuda SPT, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048PubMedCrossRefGoogle Scholar
  122. Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107(1):6–19PubMedCrossRefGoogle Scholar
  123. Taniguchi F, Fukuoka H, Tanaka J (2012) Expressed sequence tags from organ-specific cDNA libraries of tea (Camellia sinensis) and polymorphisms and transferability of EST-SSRs across Camellia species. Breed Sci 62:186–195PubMedPubMedCentralCrossRefGoogle Scholar
  124. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416PubMedCrossRefGoogle Scholar
  125. Terrier N, Ageorges A, Abbal P, Romieu C (2001) Generation of ESTs from grape berry at various developmental stages. J Plant Physiol 158:1575–1583CrossRefGoogle Scholar
  126. Tian L, Peel GJ, Lei Z, Aziz N, Dai X, He J et al (2009) Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots. BMC Plant Biol 9:1PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T et al (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300PubMedPubMedCentralCrossRefGoogle Scholar
  128. Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N et al (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204PubMedPubMedCentralCrossRefGoogle Scholar
  129. van de Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12 hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. PNAS 92:6743–6747PubMedCrossRefGoogle Scholar
  130. van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization and evolution of genes in the tomato genome based on analysis of a large EST collection and selective genomic sequencing. Plant Cell 14:1441–1456PubMedPubMedCentralCrossRefGoogle Scholar
  131. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression sequence. Science 270:484–487PubMedCrossRefGoogle Scholar
  132. Vinod MS, Sankararamasubramanian HM, Priyanka R, Ganesan G, Parida A (2010) Gene expression analysis of volatile-rich male flowers of dioecious Pandanus fascicularis using expressed sequence tags. J Plant Physiol 167:914–919PubMedCrossRefGoogle Scholar
  133. Wan H, Li L, Federhen S, Wootton JC (2003) Discovering simple regions in biological sequences associated with scoring schemes. J Comput Biol 10:171–185PubMedCrossRefGoogle Scholar
  134. Wang G, Tian L, Aziz N, Broun P, Dai X, He J et al (2008) Terpene biosynthesis in glandular trichomes of Hop. Plant Physiol 148:1254–1266PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wang W, Wang Y, Zhang Q, Qi Y, Guo D (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wang YC, Yang CP, Liu GF, Jiang J, Wu JH (2006) Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Sci 170:28–36CrossRefGoogle Scholar
  137. Wang YQ, Shen JK, Berglund T, Ohlsson AB, Tang XF, Zhou ZK et al (2010) Analysis of expressed sequence tags from Ginkgo mature foliage in China. Tree Genet Genomes 6:357–365CrossRefGoogle Scholar
  138. Wang YS, Gao LP, Wang ZR, Liua YJ, Suna ML, Yanga DQ et al (2012) Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Sci Hort 133:72–83CrossRefGoogle Scholar
  139. White JA, Todd T, Newman T, Focks N, Girke T, de Ilarduya OM et al (2000) A new set of Arabidopsis expressed sequence tags from developing seeds: the metabolic pathway from carbohydrates to seed oil. Plant Physiol 124:1582–1594PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wyk BEV, Wink M (2004) Medicinal plants of the World. Briza Publications, PretoriaGoogle Scholar
  141. Xu SX, Huang QY, Lin CS, Lin FC, Lin LX, Shen QY (2015) Rapid generation and analysis of expressed sequence tags to uncovering inflorescence secondary metabolism of Bougainvillea spectabilis ‘Speciosas’ by pyrosequencing. Euphytica 205:747–759CrossRefGoogle Scholar
  142. Xu Y, Zhu Z, Xiao Y, Wang Y (2009) Construction of a cDNA library of Vitis pseudoreticulata native to China inoculated with Uncinula necator and the analysis of potential defence-related expressed sequence tags (ESTs). S Afr J Enol Vitic 30(1):65–71Google Scholar
  143. Yan YP, Wang ZZ, Tian W, Dong ZM, Spencer DF (2010) Generation and analysis of expressed sequence tags from the medicinal plant Salvia miltiorrhiza. Sci China Life Sci 53(1):273–285PubMedCrossRefGoogle Scholar
  144. Yang D, Liua Y, Suna M, Zhao L, Wang Y, Chen X (2012) Differential gene expression in tea (Camellia sinensis L.) calli with different morphologies and catechin contents. J Plant Physiol 169:163–175PubMedCrossRefGoogle Scholar
  145. Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26:1466–1487PubMedCrossRefGoogle Scholar
  146. Yoshida K, Nishiguchi M, Futamura N, Nanjo T (2007) Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiol 27:1–9PubMedCrossRefGoogle Scholar
  147. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA et al (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11:94PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD et al (2005) MetaCyc and AraCyc. metabolic pathway databases for plant research. Plant Physiol 138:27–37PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang X, Wang J, Cao K, Xu C, Cao W (2015) An expressed sequence tags analysis for leaves of Chinese milk vetch (Astragalus sinicus). Legume Res 38(1):1–8CrossRefGoogle Scholar
  150. Zulak KG, Cornish A, Daskalchuk TE, Deyholos MK, Goodenowe DB, Gordon PMK et al (2007) Gene transcript and metabolite proWling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta 225:1085–1106PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aruna G. Joshi
    • 1
  • Ashutosh R. Pathak
    • 1
  1. 1.Faculty of Science, Department of BotanyThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations