Advertisement

Modern Molecular Biology Technologies and Higher Usability of Ancient Knowledge of Medicinal Plants for Treatment of Human Diseases

  • Venkatesh VaidyanathanEmail author
  • Vijay Naidu
  • Anower Jabed
  • Khanh Tran
  • Prasanna Kallingappa
  • Chi Hsiu-Juei Kao
  • Alice Wang
  • Nishi Karunasinghe
  • Radha Pallati
  • Gareth Marlow
  • Shaik Noor Ahmad
  • Lynnette R. Ferguson
Chapter

Abstract

Medicinal plants and plant products have been used by humans since the ancient times. Medicinal plants find wide usage in developed as well as in developing countries worldwide even till date, and yet there is not much crosstalk between the researchers of molecular medicine and/or diagnostics and practitioners and users of alternative medicines. In this chapter, we have tried to connect the dots and identify certain simple yet well-established molecular technologies that we believe should be employed in order to identify the function of the genes and the effect of the bioactive compound(s) in medicinal plant(s) to treat patients with various chronic diseases such as various cancers or enhance conventional treatment for better patient outcome.

Keywords

SNP genotyping PLINK CRISPR/Cas9 miRNA Phylogenetic tree GeCKO 

Abbreviations

AKR1C3

Aldo-keto reductase family 1 member C3

BH-FDR

Benjamini and Hochberg False Discovery Rate

BLOSUM

BLOcks SUbstitution Matrix

BONF

Bonferroni correction

DASH

Dynamic allele-specific hybridization

DNA

Deoxyribonucleic acid

dNDPs

Deoxynucleotide diphosphates

dNTPs

Deoxynucleotide triphosphates

FASTA

FAST-All

gDNA

Genomic DNA

GeCKO

Genome-scale CRISPR knock-out

GWAS

Genome-wide association studies

HDR

Homology-directed repair

HOXB8

Homeobox B8

HWE

Hardy-Weinberg equilibrium

IBS

Identical by state

LD

Linkage disequilibrium

MAFFT

Multiple alignment using fast Fourier transform

ME

Minimum evolution

ML

Maximum likelihood

MP

Maximum parsimony

mRNA

Messenger ribonucleic acid

NJ

Neighbour joining

NHER

Non-homologous end joining

PAM

Point accepted mutations

PCa

Prostate cancer

PSA

Prostate-specific antigen

RFLP

Restriction fragment length polymorphism

RNA

Ribonucleic acid

RNAi

RNA interference

sgRNA

Single guide RNA

shRNA

Short hairpin RNA

SNP

Single nucleotide polymorphism

TALEN

Transcription activator-like effector nuclease

UPGMA

Unweighted pair group method with arithmetic means

ZFN

Zinc finger nuclease

References

  1. Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY (2016) The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 5:610–618CrossRefGoogle Scholar
  2. Anderson JE, Hansen LL, Mooren FC, Post M, Hug H, Zuse A, Los M (2006) Methods and biomarkers for the diagnosis and prognosis of cancer and other diseases: towards personalized medicine. Drug Resist Updat 9:198–210CrossRefGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  4. Bichenkova EV, Lang Z, Yu X, Rogert C, Douglas KT (2011) DNA-mounted self-assembly: new approaches for genomic analysis and SNP detection. Biochim Biophys Acta 1809:1–23.  https://doi.org/10.1016/j.bbagrm.2010.11.002CrossRefPubMedGoogle Scholar
  5. Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN or CRISPR. Mol Cell Endocrinol 58:575–585.  https://doi.org/10.1016/j.molcel.2015.04.028CrossRefGoogle Scholar
  6. Brinkman FSL, Leipe DD (2002) Phylogenetic analysis. In: Baxevanis AD, Ouellette BFF (eds) Bioinformatics: a practical guide to the analysis of genes and proteins. John Wiley & Sons, Inc., New York, USA, pp 323–358CrossRefGoogle Scholar
  7. Brown T (2002) Molecular phylogenetics, 2nd edn. Wiley-Liss, OxfordGoogle Scholar
  8. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–488CrossRefGoogle Scholar
  9. Chen S, Sun H, Miao K, Deng CX (2016) CRISPR-Cas9: from genome editing to cancer research. Int J Biol Sci 12:1427–1436.  https://doi.org/10.7150/ijbs.17421CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ciampa J, Yeager M, Amundadottir L, Jacobs K, Kraft P, Chung C, Wacholder S, Yu K, Wheeler W, Thun MJ, Divers WR, Gapstur S, Albanes D, Virtamo J, Weinstein S, Giovannucci E, Willett WC, Cancel-Tassin G, Cussenot O, Valeri A, Hunter D, Hoover R, Thomas G, Chanock S, Chatterjee N (2011) Large-scale exploration of gene-gene interactions in prostate cancer using a multistage genome-wide association study. Cancer Res 71:3287–3295CrossRefGoogle Scholar
  11. van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Micro 12:479–492CrossRefGoogle Scholar
  12. Ding C, Jin S (2009) High-throughput methods for SNP genotyping. Methods Mol Biol 578:245–254.  https://doi.org/10.1007/978-1-60327-411-1_16CrossRefPubMedGoogle Scholar
  13. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefGoogle Scholar
  14. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  15. Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 2:12.  https://doi.org/10.1002/0471142905.hg0212s60CrossRefPubMedGoogle Scholar
  16. Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 9:103–110.  https://doi.org/10.1093/bfgp/elp059CrossRefPubMedGoogle Scholar
  17. Gottumukkala S, Dwarakanath CD, Sudarsan S (2013) Ribonucleic acid interference induced gene knockdown. J Indian Soc Periodontol 17:417–422.  https://doi.org/10.4103/0972-124X.118309CrossRefPubMedPubMedCentralGoogle Scholar
  18. Green DM (2005) Improving health care and laboratory medicine: the past, present, and future of molecular diagnostics. Proc (Bayl Univ Med Cent) 18:125–129CrossRefGoogle Scholar
  19. Griffiths A, Miller J, Suzuki D, Lewontin R, Gelbart W (2000) Recombinant DNA technology in eukaryotes, an introduction to genetic analysis. W. H. Freeman and Company, New YorkGoogle Scholar
  20. Hannon GJ (2002) RNA interference. Nature 418:244–251CrossRefGoogle Scholar
  21. Hansen T (2007) The nobel prize in physiology or medicine 2007. Scand J Immunol 66:603–603.  https://doi.org/10.1111/j.1365-3083.2007.02041.xCrossRefPubMedGoogle Scholar
  22. Hayafune M, Miyano-Kurosaki N, Takaku H, Park WS (2006) Silencing of HIV-1 gene expression by siRNAs in transduced cells. Nucleosides Nucleotides Nucleic Acids 25:795–799CrossRefGoogle Scholar
  23. Hu N, Wang C, Hu Y, Yang HH, Giffen C, Tang ZZ, Han XY, Goldstein AM, Emmert-Buck MR, Buetow KH, Taylor PR, Lee MP (2005) Genome-wide association study in esophageal cancer using GeneChip mapping 10K array. Cancer Res 65:2542–2546CrossRefGoogle Scholar
  24. Kao C, Jesuthasan AC, Bishop KS, Glucina MP, Ferguson LR (2013) Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways. Func Foods Health Disease 3:48–65CrossRefGoogle Scholar
  25. Karunasinghe N, Lange K, Yeo Han D, Goudie M, Zhu S, Wang AH, Bishop K, Ferguson LR, Masters JG (2013) Androgen pathway related gene variants and prostate cancer association in auckland men. Curr Pharmacogenomics Pers Med 11:22–30CrossRefGoogle Scholar
  26. Karunasinghe N, Zhu Y, Han DY, Lange K, Zhu S, Wang A, Ellett S, Masters J, Goudie M, Keogh J, Benjamin B, Holmes M, Ferguson LR (2016) Quality of life effects of androgen deprivation therapy in a prostate cancer cohort in New Zealand: can we minimize effects using a stratification based on the aldo-keto reductase family 1, member C3 rs12529 gene polymorphism? BMC Urol 16:1–14.  https://doi.org/10.1186/s12894-016-0164-4.CrossRefGoogle Scholar
  27. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  28. Katoh K, Misawa K, Kuma Ki, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066.  https://doi.org/10.1093/nar/gkf436CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kelly K (2009) History of Medicine. Facts on File, New York, pp 29–50Google Scholar
  30. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588.  https://doi.org/10.1038/nature14136CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ledbetter DJ, Thomson JG, Piedrahita JA, Rucker Iii EB (2014) 5 - Gene targeting in embryonic stem cells, II: conditional technologies A2 - pinkert, carl A, transgenic animal technology, 3rd edn. Elsevier, London, pp 141–165Google Scholar
  32. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670CrossRefGoogle Scholar
  33. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419CrossRefGoogle Scholar
  34. Liu H, Wang B, Han C (2011) Meta-analysis of genome-wide and replication association studies on prostate cancer. Prostate 71:209–224.  https://doi.org/10.1002/pros.21235CrossRefPubMedGoogle Scholar
  35. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963CrossRefGoogle Scholar
  36. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349CrossRefGoogle Scholar
  37. Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16:223–229CrossRefGoogle Scholar
  38. Nurnberg ST, Zhang H, Hand NJ, Bauer RC, Saleheen D, Reilly MP, Rader DJ (2016) From loci to biology: Functional Genomics of Genome-Wide Association for Coronary Disease. Circ Res 118:586–606.  https://doi.org/10.1161/circresaha.115.306464CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321CrossRefGoogle Scholar
  40. Orr N, Chanock S (2008) Common genetic variation and human disease. Adv Genet 62:1–32CrossRefGoogle Scholar
  41. Pan S-Y, Zhou S-F, Gao S-H, Yu Z-L, Zhang S-F, Tang M-K, Sun J-N, Ma D-L, Han Y-F, Fong W-F, Ko K-M (2013) New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med 2013:25.  https://doi.org/10.1155/2013/627375CrossRefGoogle Scholar
  42. Park YN, Masison D, Eisenberg E, Greene LE (2011) Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast 28:673–681.  https://doi.org/10.1002/yea.1895CrossRefPubMedPubMedCentralGoogle Scholar
  43. Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6(11):1–5CrossRefGoogle Scholar
  44. Pomerantz MM, Werner L, Xie W, Regan MM, Lee GS, Sun T, Evan C, Petrozziello G, Nakabayashi M, Oh WK, Kantoff PW, Freedman ML (2011) Association of prostate cancer risk Loci with disease aggressiveness and prostate cancer-specific mortality. Cancer Prev Res (Phila) 4:719–728CrossRefGoogle Scholar
  45. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefGoogle Scholar
  46. Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol. Doi:  https://doi.org/10.1586/ecp.12.74CrossRefGoogle Scholar
  47. Saleh MA, Solayman M, Paul S, Saha M, Khalil MI, Gan SH (2016) Impacts of nonsynonymous single nucleotide polymorphisms of adiponectin receptor 1 gene on corresponding protein stability: a computational approach. Biomed Res Int 2016:12.  https://doi.org/10.1155/2016/9142190CrossRefGoogle Scholar
  48. SEQUENOM I (2006) MassARRAY® Assay Design 3.1 Software User’s Guide, San DiegoGoogle Scholar
  49. Shalem O, Sanjana NE, Hartenian E, Shi Xi, Scott DA, Mikkelson T, Heckl D, Ebert BL, David ER, Doench JD, Zhang F (2014) Genome-scale CRISPR-cas9 knockout screening in human cells. Science 343(6166):84–87CrossRefGoogle Scholar
  50. Shen GQ, Abdullah KG, Wang QK (2009) The TaqMan method for SNP genotyping. Methods Mol Biol 578:293–306.  https://doi.org/10.1007/978-1-60327-411-1_19CrossRefPubMedGoogle Scholar
  51. Smith-Hall C, Larsen HO, Pouliot M (2012) People, plants and health: a conceptual framework for assessing changes in medicinal plant consumption. J Ethnobiol Ethnomed 8:43.  https://doi.org/10.1186/1746-4269-8-43CrossRefPubMedPubMedCentralGoogle Scholar
  52. Stock JT (2008) Are humans still evolving?: Technological advances and unique biological characteristics allow us to adapt to environmental stress. Has this stopped genetic evolution? EMBO Rep 9:S51–S54.  https://doi.org/10.1038/embor.2008.63CrossRefPubMedPubMedCentralGoogle Scholar
  53. Syrmis MW, Moser RJ, Whiley DM, Vaska V, Coombs GW, Nissen MD, Sloots TP, Nimmo GR (2011) Comparison of a multiplexed MassARRAY system with real-time allele-specific PCR technology for genotyping of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 17:1804–1810.  https://doi.org/10.1111/j.1469-0691.2011.03521.xCrossRefPubMedGoogle Scholar
  54. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  55. Tian Y, Zhao L, Wang Y, Zhang H, Xu D, Zhao X, Li Y, Li J (2016) Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells. Asian J Androl 18:607–612CrossRefGoogle Scholar
  56. Todd R, Donoff RB, Kim Y, Wong DT (2001) From the chromosome to DNA: Restriction fragment length polymorphism analysis and its clinical application. J Oral Maxillofac Surg 59:660–667CrossRefGoogle Scholar
  57. Tucakov J (1971) Healing with plants – phytotherapy. Beograd: Culture:180–190Google Scholar
  58. Tweardy DJ, Belmont JW (2009) "Personalizing" academic medicine: opportunities and challenges in implementing genomic profiling. Transl Res 154:288–294CrossRefGoogle Scholar
  59. Vaidyanathan V, Naidu V, Kao CH-J, Karunasinghe N, Bishop KS, Wang A, Pallati R, Shepherd P, Masters J, Zhu S, Goudie M, Krishnan M, Jabed A, Marlow G, Narayanan A, Ferguson L (2017) Environmental factors and risk of aggressive prostate cancer among a population of New Zealand men - a genotypic approach. Mol BioSyst 13:681–698.  https://doi.org/10.1039/C6MB00873ACrossRefPubMedGoogle Scholar
  60. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191CrossRefGoogle Scholar
  61. Witkos T, Koscianska E, Krzyzosiak W (2011) Practical Aspects of microRNA Target Prediction. Curr Mol Med 11:93–109.  https://doi.org/10.2174/156652411794859250CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wright WT, Heggarty SV, Young IS, Nicholls DP, Whittall R, Humphries SE, Graham CA (2008) Multiplex MassARRAY spectrometry (iPLEX) produces a fast and economical test for 56 familial hypercholesterolaemia-causing mutations. Clin Genet 74:463–468CrossRefGoogle Scholar
  63. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32:4776–4785CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Venkatesh Vaidyanathan
    • 1
    • 2
    Email author
  • Vijay Naidu
    • 3
  • Anower Jabed
    • 4
  • Khanh Tran
    • 4
  • Prasanna Kallingappa
    • 4
    • 5
  • Chi Hsiu-Juei Kao
    • 1
    • 2
  • Alice Wang
    • 1
    • 2
  • Nishi Karunasinghe
    • 2
  • Radha Pallati
    • 1
  • Gareth Marlow
    • 6
  • Shaik Noor Ahmad
    • 7
  • Lynnette R. Ferguson
    • 1
    • 2
  1. 1.Discipline of Nutrition and Dietetics, FM & HSUniversity of AucklandAucklandNew Zealand
  2. 2.Auckland Cancer Society Research CentreAucklandNew Zealand
  3. 3.School of Engineering, Computer and Mathematical SciencesAuckland University of TechnologyAucklandNew Zealand
  4. 4.Department of Molecular Medicine and Pathology, FM & HSUniversity of AucklandAucklandNew Zealand
  5. 5.Vernon Jenson Unit, FM & HSUniversity of AucklandAucklandNew Zealand
  6. 6.Experimental Cancer Medicine CentreCardiff UniversityCardiffUK
  7. 7.Department of Genetic MedicineKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations