Anticancer Mechanistic Insights of Epigallocatechin-3-Gallate, an Active Ingredient of Green Tea (Camellia sinensis)

  • Bilal Ahmad Mir
  • Saiema Rasool
  • Muneeb U. Rehman
  • Insha Amin
  • Rayeesa Ali


Ineffectiveness of conventional anticancer drugs opens new challenges for researchers to search for effective, safe, and economical anticancer agents. Currently cancer is a global health concern, and heavy efforts are being done by researchers to evolve the effective anticancer drugs having minimum toxicity and broad safety profile. Green tea is one of the natural plant product consumed by people in every corner of the world. Its phytochemical constituents are polyphenol flavonoid catechins like epigallocatechin-3-gallate (EGCG), (−) epigallocatechin, and (−) epicatechin. EGCG is the major catechin and has been found to be highly effective against carcinogenesis in animal models and human clinical trials. It has been reported that EGCG inhibit tumorigenesis and malignancies by different molecular mechanisms like restraining the mitogen-activated protein kinase pathways, inhibition of growth factor cell signaling, induction of apoptosis, NFκB pathways inhibition, and inhibition of other molecular mechanisms discussed in this review. Besides acting directly as potent anticancer agent, it also enhances the activity of other allopathic currently available anticancer drugs by its additive or synergistic action and minimizes their toxicity. Therefore EGCG is one of the most potent anticancer compound having maximum efficacy and minimum cytotoxicity. It not only makes green tea as anticancer remedy but also provides new clues to evolve safe and potent anticancerous agents for researchers.


Apoptosis EGCG NFKB STAT3 Tumor 


  1. Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64:8715–8722PubMedCrossRefGoogle Scholar
  2. Ahn WS, Yoo J, Huh SW, Kim CK, Lee JM, Namkoong SE et al (2003) Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur J Cancer Prev 12:383–390PubMedCrossRefPubMedCentralGoogle Scholar
  3. Al-Hazzani AA, Alshatwi AA (2011) Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem Toxicol 49:3281–3265PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ayala G, Wang D, Wulf G, Frolov A, Li R et al (2003) The prolyl isomerase Pin1 is a novel prognostic marker in human prostate cancer. Cancer Res 63:6244–6251PubMedPubMedCentralGoogle Scholar
  5. Azare J, Doane A, Leslie K, Chang Q, Berishaj M, Nnoli J, Mark K, Al-Ahmadie H, Gerald W, Hassimi M, Viale A, Stracke M, Lyden D, Bromberg J (2011) STAT3 mediates expression of autotaxin in breast cancer. PLoS One 6:e27861CrossRefGoogle Scholar
  6. Balasubramanian S, Adhikary G, Eckert RL (2010) The Bmi-1 polycomb protein antagonizes the (−)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis 31:496–503PubMedCrossRefPubMedCentralGoogle Scholar
  7. Balentine DA, Wiseman SA, Bouwens LCM (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66:1234–1240PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea: a review. J Am Coll Nutr 25:79–99PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chan MM, Soprano KJ, Weinstein K, Fong D (2006) Epigallocatechin-3-gallate delivers hydrogen peroxide to induce death of ovarian cancer cells and enhances their cisplatin susceptibility. J Cell Physiol 207:389–396PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chung SS, Vadgama JV (2015) Curcumin and Epigallocatechin Gallate inhibit the Cancer stem cell phenotype via Down-regulation of STAT3–NFĸBSignaling. Anticancer Res 35:39–46PubMedPubMedCentralGoogle Scholar
  13. Chuu CP, Chen RY, Kokontis JM, Hiipakka RA, Liao S (2009a) Suppression of androgen receptor signaling and prostate specific antigen expression by (−)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett 275:86–92PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chuu CP, Chen RY, Kokontis JM, Hiipakka RA, Liao S (2009b) Suppression of androgen receptor signaling and prostate specific antigen expression by (−)- epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett 275:86–92PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chuu CP, Chen RY, Kokontis JM, Hiipakka R (2009c) A, and Liao S: suppression of androgen receptor signaling and prostate specific antigen expression by (−)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett 275:86–92PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22:442–451PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dong Z, Ma W, Huang C, Yang CS (1997) Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (−)-epigallocatechin gallate, and theaflavins. Cancer Res 57:14–19Google Scholar
  18. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037PubMedCrossRefPubMedCentralGoogle Scholar
  19. Farabegoli F, Papi A, Bartolini G, Ostan R, Orlandi M (2010a) ()-Epigallocatechin-3- gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine 17:356–362PubMedCrossRefGoogle Scholar
  20. Farabegoli F, Papi A, Bartolini G, Ostan R, Orlandi M (2010b) Epigallocatechin-3- gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine 17:356–362PubMedCrossRefGoogle Scholar
  21. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:359–386CrossRefGoogle Scholar
  22. Fujiki H, Suganuma M, Okabe S, Sueoka E, Suga K, Imai K et al (1999) Mechanistic findings of green tea as cancer preventive for humans. Proc Soc Exp Biol Med 220:225–229PubMedCrossRefGoogle Scholar
  23. Fujiki H, Suganuma M, Imai K, Nakachi K (2002) Green tea: cancer preventive beverage and/or drug. Cancer Lett 188:9–13PubMedCrossRefGoogle Scholar
  24. Godeke J, Maier S, Eichenmuller M, Muller-Hocker J, von Schweinitz D, Kappler R (2013) Epigallocatechin-3-gallate inhibits hepatoblastoma growth by reactivating the Wnt inhibitor SFRP1. Nutr Cancer 65:1200–1207PubMedCrossRefGoogle Scholar
  25. Gu JW, Makey KLK, Tucker B et al (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1 and NF B, and VEGF expression. Vasc Cell 6:42–51Google Scholar
  26. Gupta K, Hastak N, Ahmad JS, Lewin H (2001) Mukhtar, inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A 98:10350–10355PubMedPubMedCentralCrossRefGoogle Scholar
  27. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML et al (2003a) Role of p53 and NF- B in epigallocatechin- 3-gallate-induced apoptosis of LNCaP cells. Oncogene 22:4851–4859PubMedCrossRefGoogle Scholar
  29. Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H (2003b) Role of p53 and NFkappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 22:4851–4859PubMedCrossRefGoogle Scholar
  30. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3086PubMedPubMedCentralGoogle Scholar
  31. Huang KH, Kuo KL, Chen SC, WengTI CYT, Tsai YC et al (2012) Downregulation of glucose-regulated protein (GRP) 78 potentiates cytotoxic effect of celecoxib in human urothelial carcinoma cells. PLoS One 7:33615CrossRefGoogle Scholar
  32. Huang Y, MotofumiKumazoe JB, Yamada S, Takai M, Hidaka S, Yamashita S, Kim Y, Won YS, Murata M, Tsukamoto S, Tachibana H (2015) Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells. Oncol Rep 34:1162–1168PubMedPubMedCentralCrossRefGoogle Scholar
  33. Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig 114:569–581PubMedCrossRefPubMedCentralGoogle Scholar
  34. Jang JY, Lee JK, Jeon YK, Kim CW (2013) Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor associated macrophage infiltration and M2 polarization. BMC Cancer 13:421–429PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ju J, Liu Y, Hong J, Huang MT, Conney AH, Yang CS (2003) Effects of green tea and high-fat diet on arachidonic acid metabolism and aberrant crypt foci formation in an azoxymethane-induced colon carcinogenesis mouse model, Nutr. Cancer 46:172–178Google Scholar
  36. Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J et al (2005) Inhibition of intestinal tumorigenesis in Apcmin/+mice by (−)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 65:10623–10631PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jung YD, Kim MS, Shin BA et al (2001) EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 84:844–850PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kane RC, Farrell AT, Sridhara R, Pazdur R (2006) United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12:2955–2960PubMedCrossRefGoogle Scholar
  39. Kedar H, Sanjay G, Nihal MKA, Munna LA, Mukhtar H (2003) Role of p53 and NF-B in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 22:4851–4859CrossRefGoogle Scholar
  40. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kim CJ, Cho YG, Park YG, Nam SW, Kim SY et al (2005) Pin1 overexpression in colorectal cancer and its correlation with aberrant beta-catenin expression. World J Gastroenterol 11:5006–5009PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kim HS, Quon MJ, Kim JA (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea, epigallocatechin 3-gallate. Redox Biol 2:187–195PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kuhn DJ, Lam WH, Kazi A, Daniel KG, Song S, Chow LM, Chan TH, Dou QP (2005) Synthetic peracetate tea polyphenols as potent proteasome inhibitors and apoptosis inducers in human cancer cells. Front Biosci 10:1010–1023PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kuo PL, Lin CC (2003) Green tea constituent ()-epigallocatechin- 3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci 10:219–227PubMedPubMedCentralGoogle Scholar
  45. Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:326–333CrossRefGoogle Scholar
  46. Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S et al (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomark Prev 11:1025–1032Google Scholar
  47. Lee KM, Yeo M, Choue JS, Jin JH, Park SJ, Cheong JY et al (2004) Protective mechanism of epigallocatechin-3-gallate against helicobacter pylori-induced gastric epithelial cytotoxicity via the blockage of TLR-4 signaling. Helicobacter 9:632–642PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lee JH, Jin H, Shim HE, Kim HN, Ha H et al (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol 77:17–25PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lee TC, Cheng IC, Shue JJ, Wang TC (2011) Cytotoxicity of arsenic trioxide is enhanced by () epigallocatechin-3-gallate via suppression of ferritin in cancer cells. Toxicol Appl Pharmacol 250(1):69–77PubMedCrossRefPubMedCentralGoogle Scholar
  50. Li Y, Yuan YY, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-negative breast cancer cells. Mol Cancer 9:274–279PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liang G, Tang A, Lin X, Li L, Zhang S, Huang Z et al (2010a) Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 371:111–123Google Scholar
  52. Liang G, Tang A, Lin X, Li L, Zhang S, Huang Z et al (2010b) Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 31:11–23Google Scholar
  53. Masuda M, Suzui M, Lim JT, Weinstein IB (2003) Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin Cancer Res 9:3486–3491PubMedPubMedCentralGoogle Scholar
  54. Matsui M, Homma H (1994) Biochemistry and molecular biology of drug-metabolizing sulfotransferase. Int J Biochem 26:1237–1247PubMedCrossRefPubMedCentralGoogle Scholar
  55. Mineva ND, Paulson KE, Naber SPA, Yee S, Sonenshein GE (2013) Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One 8:e73464PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mohan N, Karmakar S, Banik NL, Ray SK (2011) SU5416 and EGCG work synergistically and inhibit angiogenic and survival factors and induce cell cycle arrest to promote apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-BE2 cells. Neurochem Res 36:1383–1396PubMedCrossRefPubMedCentralGoogle Scholar
  57. Naasani I, Seimiya H, Tsuruo T (1998) Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem Biophys Res Commun 249:391–396PubMedCrossRefPubMedCentralGoogle Scholar
  58. Nakashima M, Meirmanov S, Naruke Y, Kondo H, Saenko V et al (2004) Cyclin D1 overexpression in thyroid tumours from a radio-contaminated area and its correlation with Pin1 and aberrant beta-catenin expression. J Pathol 202:446–455PubMedCrossRefPubMedCentralGoogle Scholar
  59. Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276:13322–13330PubMedCrossRefPubMedCentralGoogle Scholar
  60. Naujokat C, Hoffmann S (2002) Role and function of the 26S proteasome in proliferation and apoptosis. Lab Investig 82:965–980PubMedCrossRefGoogle Scholar
  61. Nihal M, Roelke CT, Wood GS (2010) Anti-melanoma effects of vorinostat in combination with polyphenolic antioxidant (−)-epigallocatechin-3-gallate (EGCG). Pharm Res 27:1103–1114PubMedCrossRefGoogle Scholar
  62. Osada K, Takahashi M, Hoshina S, Nakamura M, Nakamura S et al (2001) Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro. Comp Biochem Physiol Part C Toxicol Pharmacol 128:153–164CrossRefGoogle Scholar
  63. Perl A, Carroll M (2011) BCR-ABL kinase is dead; long live the CML stem cell. J Clin Invest 121:22–25PubMedCrossRefGoogle Scholar
  64. Prasad R, Santosh KK (2015) Polyphenols from green tea inhibit the growth of melanoma cells through inhibition of class I histone deacetylases and induction of DNA damage. Genes Cancer 6:2–6Google Scholar
  65. Qiao J, Gu C, Shang W, Du J, Yin W, Zhu M et al (2011a) Effect of green tea on pharmacokinetics of 5-fluorouracil in rats and pharmacodynamics in human cell lines in vitro. Food Chem Toxicol 49(6):1410–1415PubMedCrossRefGoogle Scholar
  66. Qiao J, Gu C, Shang W, Du J, Yin W, Zhu M et al (2011b) Effect of green tea on pharmacokinetics of 5-fluorouracil in rats and pharmacodynamics in human cell lines in vitro. Food Chem Toxicol 49(6):1410–1415PubMedCrossRefGoogle Scholar
  67. Qin J, Xie LP, Zheng XY et al (2007) A component of green tea, (−)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem Biophys Res Comm 354:852–857PubMedCrossRefGoogle Scholar
  68. Rahmani AH, Al Zohairy MA, Aly SM, Khan MA (2014) Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. Biomed Res Int 8:15Google Scholar
  69. Rathone K, Wang HC (2013) Mesenchymal and stem-like cell targeting in suppression of chronically induced breast carcinogenesis. Cancer Lett 333:113–123CrossRefGoogle Scholar
  70. Roth M, Timmermann BN, Hagenbuch B (2011) Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab Dispos 39:920–926PubMedPubMedCentralCrossRefGoogle Scholar
  71. Roy AM, Baliga MS, Katiyar SK (2005) Epigallocatechin-3- gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol Cancer Ther 4:81–90PubMedPubMedCentralGoogle Scholar
  72. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP (2001) Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 3:793–801PubMedCrossRefGoogle Scholar
  73. Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW et al (2002) PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 22:5281–5295PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sadava D, Whitlock E, Kane SE (2007) The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun 360:233–237PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sakata R, Ueno T, Nakamura T, Sakamoto M, Torimura T, Sata M (2004) Green tea polyphenol epigallocatechin-3-gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell line LI90. J Hepatol 40:52–59PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sang S, Lambert JD, Ho CT, Yang CS (2011) The chemistry and biotransformation of tea constituents. Pharmacol Res 64:87–99PubMedCrossRefGoogle Scholar
  77. Sartippour MR, Shao ZM, Heber D, Beatty P, Zhang L, Liu C et al (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132:2307–2311PubMedCrossRefGoogle Scholar
  78. Shankar S, Chen Q, Srivastava RK (2008) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 3:71–78CrossRefGoogle Scholar
  79. Shimizu M, Shirakami Y, Sakai H, Adachi S, Hata K, Hirose Y et al (2008a) (−)-Epigallocatechin gallate suppresses azoxymethane-induced colonic premalignalesions in male C57BL/KsJ-db/db mice. Cancer Prev Res 1:298–304CrossRefGoogle Scholar
  80. Shimizu M, Fukutomi Y, Ninomiya M et al (2008b) Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study. Cancer Epidemiol Biomark Preven 17:3020–3025CrossRefGoogle Scholar
  81. Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H (2011) Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J 25:1198–1207PubMedPubMedCentralCrossRefGoogle Scholar
  82. Singh T, Katiyar SK (2013) Green tea polyphenol, (−)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting beta-catenin signaling. Toxicol Appl Pharmacol 273:418–424PubMedCrossRefPubMedCentralGoogle Scholar
  83. Singh M, Tyagi S, Bhui K, Prasad S, Shukla Y (2010) Regulation of cell growth through cell cycle arrest and apoptosis in HPV 16 positive human cervical cancer cells by tea polyphenols. Investig New Drugs 28:216–224CrossRefGoogle Scholar
  84. Stearns ME, Wang M (2011a) Synergistic effects of the green tea extract epigallocatechin- 3-gallate and taxane in eradication of malignant human prostate tumors. Transl Oncol 4:147–156PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stearns ME, Wang M (2011b) Synergistic effects of the green tea extract epigallocatechin-3-gallate and taxane in eradication of malignant human prostate tumors. Transl Oncol 4:147–156PubMedPubMedCentralCrossRefGoogle Scholar
  86. Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM (2010) Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol 177(6):3169–3179PubMedPubMedCentralCrossRefGoogle Scholar
  87. Strassburg CP, Nguyen N, Manns MP, Tukey RH (1999) UDP-glucuronosyltransferase activity in human liver and colon. Gastroenterology 116:149–160PubMedCrossRefPubMedCentralGoogle Scholar
  88. Suganuma M, Ohkura Y, Okabe S, Fujiki H (2001) Combination cancer chemoprevention with green tea extract and sulindac shown in intestinal tumor formation in min mice. J Cancer Res Clin Oncol 127:69–72PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sukhthankar M, Choi CK, English A, Kim JS, Baek SJ (2010) A potential proliferative gene, NUDT6, is down-regulated by green tea catechins at the posttranscriptional level. J Nutr Biochem 21:98–106PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tang SN, Fu J, Shankar S, Srivastava RK (2012) EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PLoS One 7:310–367CrossRefGoogle Scholar
  91. Thakur VS, Gupta K, Gupta S (2012a) Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int J Oncol 41:353–361PubMedPubMedCentralGoogle Scholar
  92. Thakur VS, Gupta K, Gupta S (2012b) Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases. Carcinogenesis 33:377–384PubMedCrossRefPubMedCentralGoogle Scholar
  93. Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146PubMedCrossRefPubMedCentralGoogle Scholar
  94. Tu SH, Ku CY, Ho CT, Chen CS, Huang CS, Lee CH et al (2011) Tea polyphenol (−) epigallocatechin- 3-gallate inhibits nicotine- and estrogen-induced alpha9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol Nutr Food Res 55:455–466PubMedCrossRefPubMedCentralGoogle Scholar
  95. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19:6613–6626PubMedCrossRefPubMedCentralGoogle Scholar
  96. Wang H, Bian S, Yang CS (2011) Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogenesis 32:1881–1889PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T et al (2001) Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20:3459–3472PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wulf G, Garg P, Liou YC, Iglehart D, Lu KP (2004) Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 23:3397–3407PubMedPubMedCentralCrossRefGoogle Scholar
  99. Wulf G, Finn G, Suizu F, Lu KP (2005) Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 7:435–441PubMedCrossRefPubMedCentralGoogle Scholar
  100. Xie T-X, Xia Z, Zhang N, Gong W, Huang S (2010) Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep 23:725–732PubMedCrossRefGoogle Scholar
  101. Yanaga H, Fujii T, Koga T, Araki R et al (2002) Prevention of carcinogenesis of mouse mammary epithelial cells RIII/MG by epigallocatechin gallate. Int J Mol Med 10:311–315PubMedGoogle Scholar
  102. Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85:1038–1049PubMedCrossRefGoogle Scholar
  103. Yang CS, Wang H (2011) Mechanistic issues concerning cancer prevention by tea catechins. Mol Nutr Food Res 55:819–831PubMedCrossRefGoogle Scholar
  104. Yang CS, Sang S, Lambert JD, Lee MJ (2008) Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res 52:139–151Google Scholar
  105. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yokoyama M, Noguchi M, Nakao Y, Pater A, Iwasaka T (2004) The tea polyphenol, (−)-epigallocatechin gallate effects on growth, apoptosis, and telomerase activity in cervical cell lines. Gynecol Oncol 92:197–204PubMedCrossRefGoogle Scholar
  107. Zhang Y, Duan W, Owusu L, Wu D, Xin Y (2015) Epigallocatechin-3 gallate induces the apoptosis of hepatocellular carcinoma LM6 cells but not non-cancerous liver cells. Int J Mol Med 35:117–124PubMedCrossRefGoogle Scholar
  108. Zou C, Liu H, Feugang JM, Hao Z, Chow HH, Garcia F (2010) Green tea compound in chemoprevention of cervical cancer. Int J Gynecol Cancer 204:617–624CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bilal Ahmad Mir
    • 1
  • Saiema Rasool
    • 2
  • Muneeb U. Rehman
    • 1
  • Insha Amin
    • 1
  • Rayeesa Ali
    • 3
  1. 1.Molecular Biology Lab, Faculty of Veterinary Sciences and Animal Husbandry, Division of Veterinary BiochemistrySheri Kashmir University of Agricultural Science and Technology (SKUAST-K)SrinagarIndia
  2. 2.Forest Biotech Lab, Faculty of Forestry, Department of Forest ManagementUniversity Putra MalaysiaSerdang, SelangorMalaysia
  3. 3.Faculty of Veterinary Sciences and Animal Husbandry, Division of Veterinary PathologySheri Kashmir University of Agricultural Science and Technology (SKUAST-K)SrinagarIndia

Personalised recommendations