Phytochemical Profile and Therapeutic Properties of Leafy Vegetables

  • Venu S. 
  • Khushbu S. 
  • Santhi S. 
  • Rawson Ashish Email author
  • Sunil C. K. 
  • Sureshkumar K. 


Consumption of fruits and vegetables is linked with health benefits like lowering risk of cancer, heart disease, hypertension and stroke. Combination of phytochemical and therapeutic properties of leafy vegetables makes them an ideal supplement in our daily diet. Leafy vegetables have high anti-oxidant capacity, which in some cases may be comparable to fruits. They are also rich in carbohydrates, high protein including essential amino acids, minerals including iron, calcium, high dietary fiber and phytochemicals such as vitamin C, carotenoids, lutein in leafy vegetables. The presence of phytochemicals such as alkaloids, flavonoids, saponins, tannins, terpenoids, cardiac glycosides, and phlobatannins contribute to therapeutic property. From ancient time, leafy vegetables are used in our diet as medicine because of their ability to produce several secondary metabolites of complex structure having anti-microbial properties but no toxic affect to human. The bioactive components of leafy vegetables also have antidiabetic, anti-histaminic, anti-carcinogenic and hypolipidemic properties, which are helpful in growth and repair of human body. However, acute and chronic toxic effects have also been reported in certain leafy vegetable, which makes it necessary to appropriately process and store leafy vegetables before consumption. This chapter explains the classification of leafy vegetables, presence of bioactive compounds, their interactions with human health and processing methods to retain the health beneficial components.


Leafy vegetables Health Phytochemical Processing 


  1. Adenipekun CO, Oyetunji OJ (2010) Nutritional values of some tropical vegetables. J Appl Biosci 35:2294–2300Google Scholar
  2. Adewale A, Olorunju AE (2013) Modulatory of effect of fresh Amaranthus caudatus and Amaranthus hybridus aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite. Pharm Res 5(4):300Google Scholar
  3. Adrogué HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356(19):1966–1978PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ahmed SA, Hanif S, Iftkhar T (2013) Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open J Med Microbiol 3(3):164CrossRefGoogle Scholar
  5. Akindahunsi AA, Oboh G (1999) Effect of some post-harvest treatments on the bioavailability of zinc from some selected tropical vegetables. La Rivista Italiana Delle Sostanze Grasse 76:285–287Google Scholar
  6. Akindahunsi AA, Salawu SO (2005) Antioxidant indices of some green leafy vegetables. Trop Sci 45(1):33–35CrossRefGoogle Scholar
  7. Aletor VA, Adeogun OA (1995) Nutrient and anti-nutrient components of some tropical leafy vegetables. Food Chem 53(4):375–379CrossRefGoogle Scholar
  8. Aletor OL, Oshodi AA, Ipinmoroti K (2002) Chemical composition of common leafy vegetables and functional properties of their leaf protein concentrates. Food Chem 78(1):63–68CrossRefGoogle Scholar
  9. Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM, Mustafa T (2000) Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. PLEFA 62(4):253–259Google Scholar
  10. Al-Mamun MA, Husna J, Khatun M, Hasan R, Kamruzzaman M, Hoque KM, Reza MA, Ferdousi Z (2016) Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complement Altern Med 16(1):157PubMedPubMedCentralCrossRefGoogle Scholar
  11. Alonso A, de la Fuente C, Martín-Arnau AM, de Irala J, Martínez JA, Martínez-González MÁ (2004) Fruit and vegetable consumption is inversely associated with blood pressure in a Mediterranean population with a high vegetable-fat intake: the Seguimiento Universidad de Navarra (SUN) Study. Br J Nutr 92(2):311–319PubMedCrossRefPubMedCentralGoogle Scholar
  12. Amornrit W, Santiyanont R (2016) Neuroprotective effect of Amaranthus lividus and Amaranthus tricolor and their effects on gene expression of RAGE during oxidative stress in SH-SY5Y cells. Genet Mol Res 15(2)Google Scholar
  13. Aneja S, Vats M, Aggarwal S, Sardana S (2013) Phytochemistry and hepatoprotective activity of aqueous extract of Amaranthus tricolor Linn. roots. J Ayur Integ Med 4(4):211CrossRefGoogle Scholar
  14. Antony AC (2007) In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr 85(2):598S–603SPubMedCrossRefPubMedCentralGoogle Scholar
  15. Bako SP, Luka SA, Bedo EB, Aula J (2002) Ethanobotany and nutrient content of Gnetum africana in Nigeria. SCITECH Publisher, USA, pp 79–84Google Scholar
  16. Baskar AA, Numair KS, Alsaif MA, Ignacimuthu S (2012) In vitro antioxidant and antiproliferative potential of medicinal plants used in traditional Indian medicine to treat cancer. Redox Rep 17(4):145–156PubMedCrossRefPubMedCentralGoogle Scholar
  17. Belitz HD, Grosch W, Schieberle P (2009) Coffee, tea, cocoa. Food chemistry 938–70Google Scholar
  18. Bhat RS, Al-Daihan S (2014) Phytochemical constituents and antibacterial activity of some green leafy vegetables. Asian Pacific J Trop Biomed 4(3):189–193CrossRefGoogle Scholar
  19. Bihani GV, Bodhankar SL, Kadam PP, Zambare GN (2013) Anti-nociceptive and anti-inflammatory activity of hydroalcoholic extract of leaves of Amaranthus tricolor L. Scholars Research Library. Pharm Lett 5(3):48–55Google Scholar
  20. Blaut M (2002) Relationship of prebiotics and food to intestinal microflora. Eur J Nutr 41(1):i11–i16PubMedPubMedCentralGoogle Scholar
  21. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9(3):165–191PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MW, Reynolds EH (2000) Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 69(2):228–232PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boyle J. (2005) Lehninger principles of biochemistry. In: Nelson D, Cox MGoogle Scholar
  24. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, Verhé R, Van Camp J (2008) Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem 108(2):649–656PubMedCrossRefPubMedCentralGoogle Scholar
  26. Champ MM (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88(S3):307–319CrossRefGoogle Scholar
  27. Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81(1):223S–229SPubMedCrossRefPubMedCentralGoogle Scholar
  28. Chinyere GC, Obasi NA (2011) Changes in the amino acids contents of selected leafy vegetables subjected to different processing treatments. Afr J Biochem Res 5(6):182–187Google Scholar
  29. Chu YF, Sun JI, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common vegetables. J Agric Food Chem 50(23):6910–6916PubMedCrossRefGoogle Scholar
  30. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38(6):421–464PubMedCrossRefGoogle Scholar
  31. Cossins EA (2000) The fascinating world of folate and one-carbon metabolism. Botany 78(6):691CrossRefGoogle Scholar
  32. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582PubMedPubMedCentralCrossRefGoogle Scholar
  33. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plants 24:1250–1319Google Scholar
  34. Dasgupta N, De B (2007) Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chem 101(2):471–474CrossRefGoogle Scholar
  35. Dauchet L, Amouyel P, Hercberg S, Dallongeville J (2006) Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 136(10):2588–2593PubMedCrossRefGoogle Scholar
  36. DeFronzo RA, Ferrannini E, Alberti KG, Zimmet P, Alberti G (2015) International textbook of diabetes mellitus, 2 volume set. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  37. Devaraj VC, Krishna BG (2013) Antiulcer activity of a polyherbal formulation (PHF) from Indian medicinal plants. Chin J Nat Med 11(2):145–148PubMedGoogle Scholar
  38. Dhiman K, Gupta A, Sharma DK, Gill NS, Goyal A (2012) A review on the medicinally important plants of the family cucurbitaceae. Asian J Clin Nutr 4(1):16–26CrossRefGoogle Scholar
  39. Dlamini N, Moroka T, Mlotshwa L, Reddy J, Botha G (2010) Indigenous edible plants as sources of nutrients and health benefitting components (nutraceuticals)Google Scholar
  40. Ejoh RA, Nkonga DV, Inocent G, Moses MC (2007) Nutritional components of some non-conventional leafy vegetables consumed in Cameroon. Pak J Nutr 6(6):712–717CrossRefGoogle Scholar
  41. Edelman M, Colt M (2016) Nutrient value of leaf vs. seed. Front Chem 4:32PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–1PubMedCrossRefGoogle Scholar
  43. Faller AL, Fialho E (2009) The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res Int 42(1):210–215CrossRefGoogle Scholar
  44. FAO (Food and Agriculture Organization of the United Nations) (1990) Utilization of tropical foods: fruits and leaves. FAO Food and Nutrition, Rome, Italy. Paper No. 47/7Google Scholar
  45. FAO W (2001) Food and nutrition division. FAO, Rome, Italy, pp 1–303Google Scholar
  46. FAO/WHO (2001) Human vitamin and mineral requirements. 2nd ed. GenevaGoogle Scholar
  47. Fujiwara N, Osanai T, Kamada T, Katoh T, Takahashi K, Okumura K (2000) Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation 101(8):856–861PubMedCrossRefPubMedCentralGoogle Scholar
  48. Funke OM (2011) Evaluation of nutrient contents of amaranth leaves prepared using different cooking methods. Food Nutr Sci 2(04):249Google Scholar
  49. Fasuyi AO (2005) Nutrient composition and processing effects on cassava leaf (Manihot esculenta, Crantz) antinutrients. Pak J Nutr 4(1):37–42Google Scholar
  50. FDA (1997) Guidance for industry: dissolution testing of immediate-release solid oral dosage forms. Food and Drug Administration, Center for Drug Evaluation and Research (CDER)Google Scholar
  51. Galloway R (2003) Anemia prevention and control: what works. Part II: tool and resourcesGoogle Scholar
  52. Gandhi P, Niraj ZK (2011) In-vitro assay of anti-proliferative potential of Amaranthus cruentus aqueous extract on human peripheral blood lymphocytes. Curr Trends Biotechnol Chem Res 1(1):42–48Google Scholar
  53. García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58(9):537–552PubMedCrossRefPubMedCentralGoogle Scholar
  54. Gardner PT, White TA, McPhail DB, Duthie GG (2000) The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem 68(4):471–474CrossRefGoogle Scholar
  55. Girija K, Lakshman K, Udaya C, Sachi GS, Divya T (2011) Anti–diabetic and anti–cholesterolemic activity of methanol extracts of three species of Amaranthus. Asian Pac J Trop Biomed 1(2):133–138PubMedPubMedCentralCrossRefGoogle Scholar
  56. Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19(3):257–267PubMedCrossRefGoogle Scholar
  57. Glew RS, VanderJagt DJ, Bosse R, Huang YS, Chuang LT, Glew RH (2005) The nutrient content of three edible plants of the Republic of Niger. J Food Compos Anal 18(1):15–27CrossRefGoogle Scholar
  58. Goldberg G (2008) Plants: diet and health. John Wiley & Sons, HobokenGoogle Scholar
  59. Guil-Guerrero JL, Rebolloso-Fuentes MM, Isasa MT (2003) Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.). J Food Compos Anal 16(2):111–119CrossRefGoogle Scholar
  60. Gupta S, Lakshmi AJ, Manjunath MN, Prakash J (2005) Analysis of nutrient and antinutrient content of underutilized green leafy vegetables. LWT Food Sci Technol 38(4):339–345CrossRefGoogle Scholar
  61. Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124(1):91–97PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gibson RS, Perlas L, Hotz C (2006) Improving the bioavailability of nutrients in plant foods at the household level. Proc Nutr Soc 65(2):160–168PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hathcock JN (1997) Vitamins and minerals: efficacy and safety. Am J Clin Nutr 66(2):427–437PubMedCrossRefPubMedCentralGoogle Scholar
  64. He FJ, Nowson CA, MacGregor GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367(9507):320–326PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hedges LJ, Lister CE (2009) Nutritional attributes of some exotic and lesser known vegetables. Plant Food Res Conf Report No 2325:1–47Google Scholar
  66. Herbert V, Shils ME, Olson JA, Shike M, Ross AC (1999) Modern nutrition in health and disease. Folic Acid 9:433–446Google Scholar
  67. Hounsome N, Hounsome B, Tomos D, Edwards-Jones G (2008) Plant metabolites and nutritional quality of vegetables. J Food Sci 73(4):R48PubMedCrossRefPubMedCentralGoogle Scholar
  68. Howard LA, Wong AD, Perry AK, Klein BP (1999) β-Carotene and ascorbic acid retention in fresh and processed vegetables. J Food Sci 64(5):929–936CrossRefGoogle Scholar
  69. Ismail A, Marjan ZM, Foong CW (2004) Total antioxidant activity and phenolic content in selected vegetables. Food Chem 87(4):581–586CrossRefGoogle Scholar
  70. Isong EU, Idiong UI (1997) Comparative studies on the nutritional and toxic composition of three varieties of Lesianthera africana. Plant Foods Hum Nutr 51(1):79–84PubMedCrossRefPubMedCentralGoogle Scholar
  71. Israili ZH, Hernández-Hernández R, Valasco M (2007) The future of antihypertensive treatment. Am J Ther 14(2):121–134PubMedCrossRefPubMedCentralGoogle Scholar
  72. Iyer Shanti R, Rekha S, Anitha AA (2012) Analysis of nitrogen and phosphate in enriched and non enriched vermicompost. J Environ Res Develop 7(2A):899–904Google Scholar
  73. IOM (Institute of Medicine) (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy Press, Washington, DCGoogle Scholar
  74. Jain V, Momin M, Laddha K (2012) Murraya koenigii: an updated review. Int J Ayur Herb Med 2(04):607–627Google Scholar
  75. Jenkins DJ, Kendall CW, Popovich DG, Vidgen E, Mehling CC, Vuksan V, Ransom TP, Rao AV, Rosenberg-Zand R, Tariq N, Corey P (2001) Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metab Clin Exp 50(4):494–503PubMedCrossRefPubMedCentralGoogle Scholar
  76. Jiménez-Aguilar DM, Grusak MA (2017) Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J Food Compos Anal 58:33–39CrossRefGoogle Scholar
  77. Kala A, Prakash J (2004) Nutrient composition and sensory profile of differently cooked green leafy vegetables. Int J Food Prop 7(3):659–669CrossRefGoogle Scholar
  78. Kamath SD, Arunkumar D, Avinash NG, Samshuddin S (2015) Determination of total phenolic content and total antioxidant activity in locally consumed food stuffs in Moodbidri, Karnataka. India Adv Appl Sci Res 6(6):99–102Google Scholar
  79. Kelly GS (1998) Folates: supplemental forms and therapeutic applications. Altern Med Rev 3(3):208–220PubMedPubMedCentralGoogle Scholar
  80. Kesari AN, Gupta RK, Watal G (2005) Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits. J Ethnopharmacol 97(2):247–251PubMedCrossRefPubMedCentralGoogle Scholar
  81. Khachik F, Goli MB, Beecher GR, Holden J, Lusby WR, Tenorio MD, Barrera MR (1992) Effect of food preparation on qualitative and quantitative distribution of major carotenoid constituents of tomatoes and several green vegetables. J Agric Food Chem 40(3):390–398CrossRefGoogle Scholar
  82. Khanna AK, Rizvi F, Chander R (2002) Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J Ethnopharmacol 82(1):19–22PubMedCrossRefPubMedCentralGoogle Scholar
  83. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21(9):1414–1431PubMedCrossRefPubMedCentralGoogle Scholar
  84. Koffuor GA, Ainooson GK, Addotey JN, Amponsah IK, Afriyie VA, Tutu R (2017) Preliminary pharmacological investigation of the ischuretic property and safety of a hydro-ethanolic extract of Amaranthus spinosus (Fam: Amaranthaceae). Int J Basic Clin Pharmacol 2(5):517–527CrossRefGoogle Scholar
  85. Kraujalis P, Venskutonis PR, Kraujalienė V, Pukalskas A (2013) Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods Hum Nutr 68(3):322–328PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kruger M, Sayed N, Langenhoven M, Holing F (1998) Composition of South African foods: vegetables and fruit. Research Institute for Nutritional Diseases, South African Medical Research Council, South Africa, pp 2–39Google Scholar
  87. Kubmarawa D, Khan ME, Punah AM, Hassan M (2008) Phytochemical Screening and antibacterial activity of extracts from Pakia Clapperotoniana keay against human pathogenic bacteria. J Med Plants Res 2(12):352–355Google Scholar
  88. Kubo I, Fujita KI, Kubo A, Nihei KI, Ogura T (2004) Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J Agric Food Chem 52(11):3329–3332PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kumar BA, Lakshman K, Velmurugan C, Sridhar SM, Gopisetty S (2014) Antidepressant activity of methanolic extract of Amaranthus Spinosus. Basic Clin Neurosci 5(1):11Google Scholar
  90. Kumari M, Gupta S, Lakshmi AJ, Prakash J (2004) Iron bioavailability in green leafy vegetables cooked in different utensils. Food Chem 86(2):217–222CrossRefGoogle Scholar
  91. Kuriakose SP, Rawson A (2015) Effect of processing on composition of green leafy vegetables. Trends Biosci 8(17):4611–4620Google Scholar
  92. Kwon YI, Hae-Dong J, Shetty K (2006) Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pac J Clin Nutr 15(3):425PubMedPubMedCentralGoogle Scholar
  93. Kawashima N, Wildman SG (1970) Fraction I protein. Annu Rev Plant Physiol 21(1):325–358CrossRefGoogle Scholar
  94. Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem 121(3):682–690CrossRefGoogle Scholar
  95. Larbie C, Abotsi P, Appiah-Opong R, Acheampong F, Tuffour I, Uto T, Torkornoo D, Marfo E, Ankamah-Mensah D, Opoku-Mensah E (2015) Anti-proliferative effect of Amaranthus Viridis Linn. On human leukemic cell lines-a preliminary studyGoogle Scholar
  96. Latunde-Dada GO (1990) Effect of processing on iron levels in and availability from some Nigerian vegetables. J Sci Food Agric 53(3):355–361CrossRefGoogle Scholar
  97. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci 95(6):3059–3064PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lester GE, Crosby KM (2002) Ascorbic acid, folic acid, and potassium content in postharvest green-flesh honeydew muskmelons: Influence of cultivar, fruit size, soil type, and year. J Am Soc Hortic Sci 127(5):843–847Google Scholar
  99. Lester GE, Eischen F (1996) Beta-carotene content of postharvest orange-fleshed muskmelon fruit: effect of cultivar, growing location and fruit size. Plant Foods Hum Nutr 49(3):191–197PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus: prospective studies of Pima Indians. N Engl J Med 329(27):1988–1992PubMedCrossRefPubMedCentralGoogle Scholar
  101. Liu S, Serdula M, Janket SJ, Cook NR, Sesso HD, Willett WC, Manson JE, Buring JE (2004) A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women. Diabetes Care 27(12):2993–2996PubMedCrossRefPubMedCentralGoogle Scholar
  102. Llorach R, Martínez-Sánchez A, Tomás-Barberán FA, Gil MI, Ferreres F (2008) Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 108(3):1028–1038PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lucock MD, Daskalakis I, Schorah CJ, Levene MI, Hartley R (1996) Analysis and biochemistry of blood folate. Biochem Mol Med 58(1):93–112PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lampe JW (2003) Spicing up a vegetarian diet: chemopreventive effects of phytochemicals. Am J Clin Nutr 78(3):579S–583SPubMedCrossRefPubMedCentralGoogle Scholar
  105. Ma J, Stampfer MJ, Giovannucci E, Artigas C, Hunter DJ, Fuchs C, Willett WC, Selhub J, Hennekens CH, Rozen R (1997) Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res 57(6):1098–1102PubMedPubMedCentralGoogle Scholar
  106. Mai TT, Thu NN, Tien PG, Van Chuyen N (2007) Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J Nutr Sci Vitaminol 53(3):267–276PubMedCrossRefPubMedCentralGoogle Scholar
  107. Masrizal MA, Giraud DW, Driskell JA (1997) Retention of vitamin c, iron, and β-carotene in vegetables prepared using different cooking methods. J Food Qual 20(5):403–418CrossRefGoogle Scholar
  108. Mauriello LM, Driskell MM, Sherman KJ, Johnson SS, Prochaska JM, Prochaska JO (2006) Acceptability of a school-based intervention for the prevention of adolescent obesity. J Sch Nurs 22(5):269–277PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mensah JK, Okoli RI, Ohaju-Obodo JO, Eifediyi K (2008) Phytochemical, nutritional and medical properties of some leafy vegetables consumed by Edo people of Nigeria. Afr J Biotechnol 7:14Google Scholar
  110. Mepba HD, Eboh L, Banigo DE (2007) Effects of processing treatments on the nutritive composition and consumer acceptance of some Nigerian edible leafy vegetables. Afr J Food Agric Nutr Dev 7:1Google Scholar
  111. Mishra SB, Verma A, Mukerjee A, Vijayakumar M (2012) Amaranthus spinosus L.(Amaranthaceae) leaf extract attenuates streptozotocin-nicotinamide induced diabetes and oxidative stress in albino rats: A histopathological analysis. Asian Pac J Trop Biomed 2(3):S1647–S1652CrossRefGoogle Scholar
  112. Misra A, Vikram NK, Pandey RM, Dwivedi M, Ahmad FU, Luthra K, Jain K, Khanna N, Devi JR, Sharma R, Guleria R (2002) Hyperhomocysteinemia, and low intakes of folic acid and vitamin B12 in urban North India. Eur J Nutr 41(2):68–77PubMedCrossRefPubMedCentralGoogle Scholar
  113. Mitra PK, Ghosh D, Ghosh T, Mitra P (2013) Anti peptic ulcer activity of the leaves of Amaranthus spinosus L. In Rats. Mint J Pharm Med Sci:52–53Google Scholar
  114. Modi AT (2007) Growth temperature and plant age influence on nutritional quality of Amaranthus leaves and seed germination capacity. Water SA 33(3):369–376Google Scholar
  115. Mosha TC, Gaga HE (1999) Nutritive value and effect of blanching on the trypsin and chymotrypsin inhibitor activities of selected leafy vegetables. Plant Foods Hum Nutr 54(3):271–283PubMedCrossRefPubMedCentralGoogle Scholar
  116. Moyo M, Amoo SO, Ncube B, Ndhlala AR, Finnie JF, Van Staden J (2013) Phytochemical and antioxidant properties of unconventional leafy vegetables consumed in southern Africa. S Afr J Bot 84:65–71CrossRefGoogle Scholar
  117. Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054(1-2):95–111PubMedCrossRefPubMedCentralGoogle Scholar
  118. Natesh HN, Abbey L, Asiedu SK (2017) An overview of nutritional and antinutritional factors in green leafy vegetables. Horticult Int J 1(2):00011Google Scholar
  119. Negi PS, Roy SK (2001) Effect of drying conditions on quality of green leaves during long term storage. Food Res Int 34(4):283–287CrossRefGoogle Scholar
  120. Nguta JM, Mbaria JM, Gakuya DW, Gathumbi PK, Kiama SG (2010) Antimalarial herbal remedies of Msambweni, Kenya. J Ethnopharmacol 128(2):424–432PubMedCrossRefPubMedCentralGoogle Scholar
  121. Nirmal SA, Ingale JM, Pattan SR, Bhawar SB (2013) Amaranthus roxburghianus root extract in combination with piperine as a potential treatment of ulcerative colitis in mice. J Integ Med 11(3):206–212CrossRefGoogle Scholar
  122. Nishikawa T, Edelstein D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787PubMedCrossRefPubMedCentralGoogle Scholar
  123. Noonan SC, Savage GP (1999) Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr 8(1):64PubMedCrossRefPubMedCentralGoogle Scholar
  124. Neugart S, Rohn S, Schreiner M (2015) Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res Int 76:114–121CrossRefGoogle Scholar
  125. Ness AR, Powles JW (1997) Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol 26(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  126. Oboh G, Akindahunsi AA (2004) Change in the ascorbic acid, total phenol and antioxidant activity of sun-dried commonly consumed green leafy vegetables in Nigeria. Nutr Health 18(1):29–36PubMedCrossRefPubMedCentralGoogle Scholar
  127. Oboh G, Rocha JB (2007) Antioxidant in foods: a new challenge for food processors. Leading Edge Antioxidants Research. p 35–64Google Scholar
  128. Oboh G, Ekperigin MM, Kazeem MI (2005) Nutritional and haemolytic properties of eggplants (Solanum macrocarpon) leaves. J Food Compos Anal 18(2-3):153–160CrossRefGoogle Scholar
  129. Oboh G, Raddatz H, Henle T (2008) Antioxidant properties of polar and non-polar extracts of some tropical green leafy vegetables. J Sci Food Agric 88(14):2486–2492CrossRefGoogle Scholar
  130. Odhav B, Beekrum S, Akula US, Baijnath H (2007) Preliminary assessment of nutritional value of traditional leafy vegetables in KwaZulu-Natal, South Africa. J Food Compos Anal 20(5):430–435CrossRefGoogle Scholar
  131. Okonwu K, Akonye LA, Mensah SI (2017) Anti-nutrients composition of fluted pumpkin leaf grown in different geoponic media. J Pharm Chem 4(6):131–140Google Scholar
  132. Orcutt DM, Nilsen ET (2000) Physiology of plant under stress: soil and biotic factors. Wiley, HobokenGoogle Scholar
  133. Orech FO, Akenga T, Ochora J, Friis H, Aagaard-Hansen J (2005) Potential toxicity of some traditional leafy vegetables consumed in Nyang’oma Division, Western Kenya. Afr J Food Agric Nutr Dev 5(1)Google Scholar
  134. Orech FO, Christensen DL, Larsen T, Friis H, Aagaard-Hansen J, Estambale BA (2007) Mineral content of traditional leafy vegetables from western Kenya. Int J Food Sci Nutr 58(8):595–602PubMedCrossRefPubMedCentralGoogle Scholar
  135. Paśko P, Bartoń H, Zagrodzki P, Gorinstein S, Fołta M, Zachwieja Z (2009) Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem 115(3):994–998CrossRefGoogle Scholar
  136. Pasricha V, Gupta RK (2014) Nutraceutical potential of Methi (Trigonella foen)Google Scholar
  137. Patro HK, Kumar A, Shukla DK, Mahapatra BS (2011) Total Productivity, nutrient uptake and economics of rice-wheat cropping system as influenced by Crotalaria juncea green manuring. Journal of Environmental Research And Development 5(3):532. um-graecum L.) and Kasuri methi (Trigonella corniculata L.). Journal of Pharmacognosy and Phytochemistry. 2014 Nov 1;3(4)Google Scholar
  138. Poiroux-Gonord F, Bidel LP, Fanciullino AL, Gautier H, Lauri-Lopez F, Urban L (2010) Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J Agric Food Chem 58(23):12065–12082PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ponka R, Fokou E, Fotso M, Tchouanguep FM, Leke R, Souopgui J, Bih MA (2006) Composition of dishes consumed in Cameroon. Int J Food Sci Technol 41(4):361–365CrossRefGoogle Scholar
  140. Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77(6):1352–1360PubMedCrossRefPubMedCentralGoogle Scholar
  141. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48(8):3396–3402PubMedCrossRefPubMedCentralGoogle Scholar
  142. Puupponen Pimiä R, Häkkinen ST, Aarni M, Suortti T, Lampi AM, Eurola M, Piironen V, Nuutila AM, Oksman Caldentey KM (2003) Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J Sci Food Agric 83(14):1389–1402CrossRefGoogle Scholar
  143. Radek M, Savage GP (2008) Oxalates in some Indian green leafy vegetables. Int J Food Sci Nutr 59(3):246–260PubMedCrossRefPubMedCentralGoogle Scholar
  144. Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R (2002) Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol 81(1):17–22PubMedCrossRefPubMedCentralGoogle Scholar
  145. Randhawa MA, Khan AA, Javed MS, Sajid MW (2015) Green leafy vegetables: a health promoting source. In: Handbook of fertility. p 205–220CrossRefGoogle Scholar
  146. Rawson A, Tiwari BK, Tuohy MG, O’Donnell CP, Brunton N (2011) Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrason Sonochem 18(5):1172–1179PubMedCrossRefPubMedCentralGoogle Scholar
  147. Rawson A, Tiwari BK, Tuohy M, Brunton N (2012) Impact of frozen storage on polyacetylene content, texture and colour in carrots disks. J Food Eng 108(4):563–569CrossRefGoogle Scholar
  148. Rawson A, Hossain MB, Patras A, Tuohy M, Brunton N (2013) Effect of boiling and roasting on the polyacetylene and polyphenol content of fennel (Foeniculum vulgare) bulb. Food Res Int 50(2):513–518CrossRefGoogle Scholar
  149. Reddy NR, Pierson MD (1994) Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res Int 27(3):281–290CrossRefGoogle Scholar
  150. Rock CL, Lovalvo JL, Emenhiser C, Ruffin MT, Flatt SW, Schwartz SJ (1998) Bioavailability of β-carotene is lower in raw than in processed carrots and spinach in women. J Nutr 128(5):913–916PubMedCrossRefPubMedCentralGoogle Scholar
  151. Raju M, Varakumar S, Lakshminarayana R, Krishnakantha TP, Baskaran V (2007) Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables. Food Chem 101(4):1598–1605CrossRefGoogle Scholar
  152. SACN (Scientific Advisory Committee on Nutrition) (2005) Review of dietary adviceon vitamin A. TSO, London, UKGoogle Scholar
  153. Sadikoglu H, Liapis AI (1997) Mathematical modelling of the primary and secondary drying stages of bulk solution freeze-drying in trays: Parameter estimation and model discrimination by comparison of theoretical results with experimental data. Dry Technol 15(3-4):791–810CrossRefGoogle Scholar
  154. Saedisomeolia A, Ashoori M (2018) Riboflavin in human health: a review of current evidences. In: Advances in food and nutrition research, vol 83. Academic Press, Cambridge, pp 57–81Google Scholar
  155. Saliu JA, Oboh G (2013) In vitro antioxidative and inhibitory actions of phenolic extract of some tropical green leafy vegetables on key enzymes linked to type 2 diabetes and hypertension. J Chem Pharmaceut Res 5:148–157Google Scholar
  156. Sasikumar V, Subramaniam A, Aneesh A, Saravanan G (2015) Protective effect of alkaloids from Amaranthus viridis linn. against hydrogen peroxide induced oxidative damage in human erythrocytes (RBC). Int J Clin Endocrinol Metab 53(1):049CrossRefGoogle Scholar
  157. Schippers RR(2000) African indigenous vegetables: an overview of the cultivated speciesGoogle Scholar
  158. Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53(S2):S330PubMedCrossRefGoogle Scholar
  159. Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53(S2):S310PubMedCrossRefGoogle Scholar
  160. Sharma HP, Kumar RA (2013) Health security in ethnic communities through nutraceutical leafy vegetables. J Environ Res Develop 7(4):1423Google Scholar
  161. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14PubMedCrossRefGoogle Scholar
  162. Shehata AN, Mahmoud AE, Abdou HM (2014) Quantification of total phenolic and total flavonoid contents in extracts of some Egyptian green leaves and estimation of antioxidant activity. Res J Pharm Biol Chem Sci 5:177–179Google Scholar
  163. Shitanda D, Wanjala NV (2006) Effect of different drying methods on the quality of jute (Corchorus olitorius L.). Dry Technol 24(1):95–98CrossRefGoogle Scholar
  164. Soares RA, Mendonça S, de Castro LÍ, Menezes AC, Arêas JA (2015) Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. Int J Mol Sci 16(2):4150–4160PubMedPubMedCentralCrossRefGoogle Scholar
  165. Solomon EB, Sapers GM, Matthews KR (eds) (2009) The produce contamination problem: causes and solutions. Academic Press, CambridgeGoogle Scholar
  166. Sparg S, Light ME, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94(2-3):219–243PubMedCrossRefGoogle Scholar
  167. Spiller GA (2001) CRC handbook of dietary fiber in human nutrition. CRC Press, Boca RatonCrossRefGoogle Scholar
  168. Sreeramulu N, Ndossi GD, Mtotomwema K (1983) Effect of cooking on the nutritive value of common food plants of Tanzania: Part 1—Vitamin C in some of the wild green leafy vegetables. Food Chem 10(3):205–210CrossRefGoogle Scholar
  169. Stanely Mainzen Prince P, Menon VP (2001) Antioxidant action of Tinospora cordifolia root extract in alloxan diabetic rats. Phytother Res 15(3):213–218PubMedCrossRefGoogle Scholar
  170. Suffo AKL, Ashish R, Tedonkeng PE, Kuiate JR (2016) Effect of Processing Methods on Chemical Composition and Antioxidant Activities of Two Amaranthus Sp. Harvested in West Region of Cameroons. J Nutr Food Sci 6:477CrossRefGoogle Scholar
  171. Susantiningsih T, Ridwan R, Prijanti AR, Sadikin M, Freisleben HJ (2012) Schizonticidal effect of a combination of Amaranthus spinosus L. and Andrographis paniculata Burm. f./Nees extracts in Plasmodium berghei-infected mice. Med J Indonesia 21(2):66CrossRefGoogle Scholar
  172. Svanberg SJ, Nyman EM, Andersson R, Nilsson T (1997) Effects of boiling and storage on dietary fibre and digestible carbohydrates in various cultivars of carrots. J Sci Food Agric 73(2):245–254CrossRefGoogle Scholar
  173. Steyn NP, Olivier J, Winter P, Burger S, Nesamvuni C (2001) A survey of wild, green, leafy vegetables and their potential in combating micronutrient deficiencies in rural populations. S Afr J Sci 97:276–278Google Scholar
  174. Takyi EE (1999) Children′ s consumption of dark green, leafy vegetables with added fat enhances serum retinol. J Nutr 129(8):1549–1554PubMedCrossRefGoogle Scholar
  175. Tambunan AH, Yudistira, Kisdiyani, Hernani (2001) Freeze drying characteristics of medicinal herbs. Dry Technol 19(2):325–331CrossRefGoogle Scholar
  176. Tarwadi K, Agte V (2003) Potential of commonly consumed green leafy vegetables for their antioxidant capacity and its linkage with the micronutrient profile. Int J Food Sci Nutr 54(6):417–425PubMedCrossRefGoogle Scholar
  177. Tohill BC, Seymour J, Serdula M, Kettel-Khan L, Rolls BJ (2004) What epidemiologic studies tell us about the relationship between fruit and vegetable consumption and body weight. Nutr Rev 62(10):365–374PubMedCrossRefGoogle Scholar
  178. Turnlund JR, King JC, Keyes WR, Gong B, Michel MC (1984) A stable isotope study of zinc absorption in young men: effects of phytate and a-cellulose. Am J Clin Nutr 40(5):1071–1077PubMedCrossRefGoogle Scholar
  179. UNESCO (2008) Fruit and vegetable summit. ParisGoogle Scholar
  180. Uusiku NP, Oelofse A, Duodu KG, Bester MJ, Faber M (2010) Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: a review. J Food Compos Anal 23(6):499–509CrossRefGoogle Scholar
  181. USDA (2005) The PLANTS Database, Version 3.5 ( Data compiled from various sources by Mark W. Skinner. National Plant Data Center, Baton Rouge, LA, 70874–74490
  182. Van Duyn MA, Pivonka E (2000) Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. J Am Diet Assoc 100(12):1511–1521PubMedCrossRefPubMedCentralGoogle Scholar
  183. Vanderjagt DJ, Freiberger C, Vu HT, Mounkaila G, Glew RS, Glew RH (2000) The trypsin inhibitor content of 61 wild edible plant foods of Niger. Plant Foods Hum Nutr 55(4):335–346PubMedCrossRefPubMedCentralGoogle Scholar
  184. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhäuser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219PubMedCrossRefPubMedCentralGoogle Scholar
  185. Vishwakarma KL, Dubey V (2011) Nutritional analysis of indigenous wild edible herbs used in Eastern Chhattisgarh, India. Emir J Food Agricul 15:554–560Google Scholar
  186. Wallace PA, Marfo EK, Plahar WA (1998) Nutritional quality and antinutritional composition of four non-conventional leafy vegetables. Food Chem 61(3):287–291CrossRefGoogle Scholar
  187. West CE, Eilander A, van Lieshout M (2002) Consequences of revised estimates of carotenoid bioefficacy for dietary control of vitamin A deficiency in developing countries. J Nutr 132(9):2920S–2926SPubMedCrossRefPubMedCentralGoogle Scholar
  188. WHO (2009) Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995– 2005. In: WHO Global Database of Vitamin A Deficiency. WHO, Geneva, SwitzerlandGoogle Scholar
  189. Yamaguchi T, Mizobuchi T, Kajikawa R, Kawashima H, Miyabe F, Terao J, Takamura H, Matoba T (2001) Radical-scavenging activity of vegetables and the effect of cooking on their activity. Food Sci Technol Res 7(3):250–257CrossRefGoogle Scholar
  190. Yamamura S, Ozawa K, Ohtani K, Kasai R, Yamasaki K (1998) Antihistaminic flavones and aliphatic glycosides from Mentha spicata. Phytochemistry 48(1):131–136CrossRefGoogle Scholar
  191. Zimmet PZ, Tuomi T, Mackay IR, Rowley MJ, Knowles W, Cohen M, Lang DA (1994) Latent autoimmune diabetes mellitus in adults (LADA): the role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabet Med 11(3):299–303PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Venu S. 
    • 1
  • Khushbu S. 
    • 1
  • Santhi S. 
    • 1
  • Rawson Ashish 
    • 1
    Email author
  • Sunil C. K. 
    • 1
  • Sureshkumar K. 
    • 1
  1. 1.Indian Institute of Food Processing TechnologyThanjavurIndia

Personalised recommendations