Advertisement

Flavonoids and Their Biological Secrets

  • M. I. Rashid
  • M. I. Fareed
  • H. Rashid
  • H. Aziz
  • N. Ehsan
  • S. Khalid
  • I. Ghaffar
  • R. Ali
  • A. GulEmail author
  • Khalid Rehman Hakeem
Chapter

Abstract

Flavonoids are tricyclic polyphenolic compounds naturally occurring in plants. Being nature’s antioxidants flavonoids have been shown to reduce the damages induced by oxidative stress in cells. Besides being an antioxidant, flavonols are demonstrated to have anti-infective properties, i.e., antiviral, antifungal, anti-angiogenic, anti-tumorigenic, and immunomodulatory bioproperties. Plants use them as one of their defense mechanisms against radiation-induced DNA damage and also for fungal infections. The use of flavonols for fabrication of new drugs has been underway with objectives to develop safer and effective therapeutic agents. This review covers 15 flavonols for their structure, biological properties, role in plant metabolisms, and current research focused on computational drug design using flavonols for searching drug leads.

Keywords

Polyphenolic Antioxidants Anti-infective Punica granatum L. 

References

  1. Abdel-Rahim E, El-Beltagi HS (2010) Constituents of apple, parsley and lentil edible plants and their therapy treatments for blood picture as well as liver and kidneys functions against lipidemic disease. EJEAFChe 9(6):1117–1127Google Scholar
  2. Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18(1):75–81PubMedCrossRefGoogle Scholar
  3. Ahmed MS, Galal AM, Ross SA, Ferreira D, Elsohly MA, Ibrahim AS, Mossa JS, El-Feraly FS (2001) A weakly antimalarial biflavanone from Rhus retinorrhoea. Phytochemistry 58(4):599–602PubMedCrossRefGoogle Scholar
  4. Al-Musayeib N, Perveen S, Fatima I, Nasir M, Hussain A (2011) Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules 16(12):10214–10226PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alves C, Pinheiro J, Camargo A, Ferreira M, Romero R, Da Silva A (2001) A multiple linear regression and partial least squares study of flavonoid compounds with anti-HIV activity. J Mol Struct THEOCHEM 541(1):81–88CrossRefGoogle Scholar
  6. Anderson G (2004) Phytochemicals. Dynamic Chiropractics, vol 2.Google Scholar
  7. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130(9):2243–2250PubMedCrossRefGoogle Scholar
  8. Arshad N, Janjua N, Khan A, Yaqub A, Burkholz T, Jacob C (2012) Natural flavonoids interact with dinitrobenzene system in aprotic media: an electrochemical probing. Nat Prod Commun 7(3):311PubMedGoogle Scholar
  9. Babu B, Jayram H, Nair M, Ajaikumar K, Padikkala J (2003) Free radical scavenging, antitumor and anticarcinogenic activity of gossypin. J Exp Clin Cancer Res 22(4):581–590PubMedGoogle Scholar
  10. Bertoncelj J, Polak T, Kropf U, Korošec M, Golob T (2011) LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chem 127(1):296–302CrossRefGoogle Scholar
  11. Biasutto L, Marotta E, De Marchi U, Zoratti M, Paradisi C (2007) Ester-based precursors to increase the bioavailability of quercetin. J Med Chem 50(2):241–253PubMedCrossRefGoogle Scholar
  12. Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, Döring F, Wolffram S, Rimbach G (2011) Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem 22(3):293–299PubMedCrossRefGoogle Scholar
  13. Bohm BA, Stuessy TF (2001) Flavonoids of the sunflower family (Asteraceae). Springer, WienCrossRefGoogle Scholar
  14. Bouhlel I, Skandrani I, Nefatti A, Valenti K, Ghedira K, Mariotte AM, Hininger-Favier I, Laporte F, Dijoux-Franca MG, Chekir-Ghedira L (2009) Antigenotoxic and antioxidant activities of isorhamnetin 3-O neohesperidoside from Acacia salicina. Drug Chem Toxicol 32(3):258–267PubMedCrossRefGoogle Scholar
  15. Brown J, O’Prey J, Harrison P (2003) Enhanced sensitivity of human oral tumours to the flavonol, morin, during cancer progression: involvement of the Akt and stress kinase pathways. Carcinogenesis 24(2):171–177PubMedCrossRefGoogle Scholar
  16. Butkovic V, Klasinc L, Bors W (2004) Kinetic study of flavonoid reactions with stable radicals. J Agric Food Chem 52(10):2816–2820PubMedCrossRefGoogle Scholar
  17. Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11(4):298–344PubMedCrossRefGoogle Scholar
  18. Campana R, Patrone V, Franzini ITM, Diamantini G, Vittoria E, Baffone W (2009) Antimicrobial activity of two propolis samples against human Campylobacter jejuni. J Med Food 12(5):1050–1056PubMedCrossRefGoogle Scholar
  19. Çelik H, Koşar M (2012) Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: structure-activity relationships. Chem Biol Interact 197:103–109PubMedCrossRefGoogle Scholar
  20. Çelik H, Koşar M, Arinç E (2013) In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (−)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase. Toxicology 308:34–40PubMedCrossRefGoogle Scholar
  21. Chang BS, Lowenstein DH (2003) Practice parameter: antiepileptic drug prophylaxis in severe traumatic brain injury: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 60(1):10–16PubMedCrossRefGoogle Scholar
  22. Chang Q, Wong Y-S (2004) Identification of flavonoids in Hakmeitau beans (Vigna sinensis) by high-performance liquid chromatography-electrospray mass spectrometry (LC-ESI/MS). J Agric Food Chem 52(22):6694–6699PubMedCrossRefGoogle Scholar
  23. Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138(4):2099–2107PubMedCrossRefGoogle Scholar
  24. Chen H, Li L, Zhou M, Ma YJ (2008) Flow-injection chemiluminescence determination of tryptophan using galangin-potassium permanganate–polyphosphoric acid system. Chin Chem Lett 19(2):203–206CrossRefGoogle Scholar
  25. Chen W-P, Hu P-F, Bao J-P, Wu L-D (2012a) Morin exerts antiosteoarthritic properties: an in vitro and in vivo study. Exp Biol Med 237(4):380–386CrossRefGoogle Scholar
  26. Chen W-P, Wang Y-L, Tang J-L, Hu P-F, Bao J-P, Wu L-D (2012b) Morin inhibits interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Int Immunopharmacol 12(2):447–452PubMedCrossRefGoogle Scholar
  27. Choi K-C, Chung W-T, Kwon J-K, Yu J-Y, Jang Y-S, Park S-M, Lee S-Y, Lee J-C (2010) Inhibitory effects of quercetin on aflatoxin B1-induced hepatic damage in mice. Food Chem Toxicol 48(10):2747–2753PubMedCrossRefGoogle Scholar
  28. Choi IS, Choi EY, Jin JY, Park HR, Choi JI, Kim SJ (2013) Kaempferol inhibits P. intermedia lipopolysaccharide-induced production of nitric oxide through translational regulation in murine macrophages: critical role of heme oxygenase-1-mediated ROS reduction. J Periodontol 84(4):545–555PubMedCrossRefGoogle Scholar
  29. Chou C-C, Yang J-S, Lu H-F, Ip S-W, Lo C, Wu C-C, Lin J-P, Tang N-Y, Chung J-G, Chou M-J (2010) Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33(8):1181–1191PubMedCrossRefGoogle Scholar
  30. Cody V, Middleton E, Harborne JB (1986) Plant flavonoids in biology and medicine: biochemical, pharmacological, and structure-activity relationships: proceedings of a symposium held in Buffalo, New York, July 22–26, 1985. Liss, New YorkGoogle Scholar
  31. Constantin RP, Constantin J, Pagadigorria CLS, Ishii-Iwamoto EL, Bracht A, Ono MDKC, Yamamoto NS (2010) The actions of fisetin on glucose metabolism in the rat liver. Cell Biochem Funct 28(2):149–158PubMedCrossRefPubMedCentralGoogle Scholar
  32. Curir P, Dolci M, Lanzotti V, Taglialatela-Scafati O (2001) Kaempferide triglycoside: a possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry 56(7):717–721PubMedCrossRefGoogle Scholar
  33. Cushnie T (2006) Investigation of the antibacterial activity of selected flavonoids. Robert Gordon University, AberdeenGoogle Scholar
  34. Cushnie T, Lamb A (2006) Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine 13(3):187–191PubMedCrossRefGoogle Scholar
  35. De Monbrison F, Maitrejean M, Latour C, Bugnazet F, Peyron F, Barron D, Picot S (2006) In vitro antimalarial activity of flavonoid derivatives dehydrosilybin and 8-(1;1)-DMA-kaempferide. Acta Trop 97(1):102–107PubMedCrossRefPubMedCentralGoogle Scholar
  36. Delgado ME, Haza AI, Arranz N, García A, Morales P (2008) Dietary polyphenols protect against N-nitrosamines and benzo (a) pyrene-induced DNA damage (strand breaks and oxidized purines/pyrimidines) in HepG2 human hepatoma cells. Eur J Nutr 47(8):479–490PubMedCrossRefGoogle Scholar
  37. El-Shobaki F, El-Bahay A, Esmail R, El-Megeid A, Esmail N (2010) Effect of figs fruit (Ficus carica L.) and its leaves on hyperglycemia in alloxan diabetic rats. World J Dairy Food Sci 5(1):47–57Google Scholar
  38. Ferrandiz M, Alcaraz M (1991) Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions 32(3–4):283–288PubMedCrossRefPubMedCentralGoogle Scholar
  39. Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33(4):767–785PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fisher RS, Boas WVE, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fottrell P, O’Connor S, Masterson C (1964) Identification of the flavonol myricetin in legume seeds and its toxicity to nodule bacteria. Irish J Agric Res 3:246–249Google Scholar
  42. Frigo DE, Duong BN, Melnik LI, Schief LS, Collins-Burow BM, Pace DK, Mclachlan JA, Burow ME (2002) Flavonoid phytochemicals regulate activator protein-1 signal transduction pathways in endometrial and kidney stable cell lines. J Nutr 132(7):1848–1853PubMedCrossRefGoogle Scholar
  43. Ganapaty S, Chandrashekhar V, Narsu ML (2010) Evaluation of anti-allergic activity of gossypin and suramin in mast cell-mediated allergy model. Indian J Biochem Biophys 47:90–95PubMedGoogle Scholar
  44. Gardana C, Scaglianti M, Pietta P, Simonetti P (2007) Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 45(3):390–399PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gautam P, Flora S (2010) Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition 26(5):563–570PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gautam A, Vijayaraghavan R (2007) Prophylactic effect of gossypin against percutaneously administered sulfur mustard. Biomed Environ Sci 20(3):250PubMedPubMedCentralGoogle Scholar
  47. Gee J, Johnson I (2001) Polyphenolic compounds: interactions with the gut and implications for human health. Curr Med Chem 8(11):1245–1255PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ghiotto R, Lavarda F, Ferreira F (2004) Antioxidant activity of flavonols. Int J Quant Chem 97(5):949–952CrossRefGoogle Scholar
  49. Gohar AA, Maatooq GT, Niwa M (2000) Two flavonoid glycosides from Chenopodium murale. Phytochemistry 53(2):299–303PubMedCrossRefPubMedCentralGoogle Scholar
  50. Grippi F, Crosta L, Tolomeo M, Aiello G, D’Amico R, Gebbia N, Curione A, Capasso A (2007) Detection of polyphenolic compounds (stilbenes and flavonoids) in natural products. Recent Dev Med Plant Res. 393–404Google Scholar
  51. Gryglewski RJ, Korbut R, Robak J, Świȩs J (1987) On the mechanism of antithrombotic action of flavonoids. Biochem Pharmacol 36(3):317–322PubMedCrossRefGoogle Scholar
  52. Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29(3):405–434PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gupta SC, Phromnoi K, Aggarwal BB (2013) Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1. Biochem Pharmacol 85:898–912PubMedCrossRefGoogle Scholar
  54. Gwak J, Oh J, Cho M, Bae SK, Song I-S, Liu K-H, Jeong Y, Kim D-E, Chung Y-H, Oh S (2011) Galangin suppresses the proliferation of β-catenin response transcription-positive cancer cells by promoting adenomatous polyposis coli/Axin/glycogen synthase kinase-3β-independent β-catenin degradation. Mol Pharmacol 79(6):1014–1022PubMedCrossRefGoogle Scholar
  55. Habtemariam S (2011) A-glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Nat Prod Commun 6(2):201–203PubMedGoogle Scholar
  56. Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47(6):2274–2279PubMedCrossRefGoogle Scholar
  57. Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47(6):2274–2279PubMedCrossRefGoogle Scholar
  58. Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213(6):953–966CrossRefGoogle Scholar
  59. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96(2):67–202PubMedCrossRefGoogle Scholar
  60. Heo MY, Sohn SJ, Au WW (2001) Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate. Mutat Res/Rev Mutat Res 488(2):135–150CrossRefGoogle Scholar
  61. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1994) Dietary flavonoids and cancer risk in the Zutphen Elderly Study. Nutr Cancer 22:175–184PubMedCrossRefGoogle Scholar
  62. Hill S, Williams KB, Denekamp J (1989) Vascular collapse after flavone acetic acid: a possible mechanism of its anti-tumour action. Eur J Cancer Clin Oncol 25(10):1419–1424PubMedCrossRefGoogle Scholar
  63. Hu Y-J, Yue H-L, Li X-L, Zhang S-S, Tang E, Zhang L-P (2012) Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J Photochem Photobiol B: Biol 112:16–22CrossRefGoogle Scholar
  64. Hung H (2004) Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol. J Cell Physiol 198(2):197–208PubMedCrossRefGoogle Scholar
  65. Ibarra M, Pérez-Vizcaíno F, Cogolludo A, Duarte J, Zaragozá-Arnáez F, López-López JG, Tamargo J (2002) Cardiovascular effects of isorhamnetin and quercetin in isolated rat and porcine vascular smooth muscle and isolated rat atria. Planta Med 68(04):307–310PubMedCrossRefGoogle Scholar
  66. Ibrahim LF, Kawashty SA, El-Hagrassy AM, Nassar MI, Mabry TJ (2008) A new kaempferol triglycoside from Fagonia taeckholmiana: cytotoxic activity of its extracts. Carbohydr Res 343(1):155–158PubMedCrossRefGoogle Scholar
  67. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30(4):433–446PubMedCrossRefGoogle Scholar
  68. Itoigawa M, Takeya K, Furukawa H (1994) Cardiotonic flavonoids from Citrus plants (Rutaceae). Biol Pharm Bull 17(11):1519–1521PubMedCrossRefGoogle Scholar
  69. Jaramillo S, Lopez S, Varela LM, Rodriguez-Arcos R, Jimenez A, Abia R, Guillen R, Muriana FJ (2010) The flavonol isorhamnetin exhibits cytotoxic effects on human colon cancer cells. J Agric Food Chem 58(20):10869–10,875PubMedCrossRefGoogle Scholar
  70. Joe EJ, Kim BG, An BC, Chong Y, Ahn JH (2010) Engineering of flavonoid O-methyltransferase for a novel regioselectivity. Mol Cells 30(2):137–141PubMedCrossRefGoogle Scholar
  71. Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo Y-S, Bode AM, Bowden GT, Lee HJ, Dong Z (2008) Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res 68(14):6021–6029PubMedCrossRefGoogle Scholar
  72. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M (1999a) Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem 63(5):896–899PubMedCrossRefGoogle Scholar
  73. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M (1999b) Effect of citrus flavonoids on HL-60 cell differentiation. Anticancer Res 19(2A):1261PubMedGoogle Scholar
  74. Khalil M, Sulaiman S (2010) The potential role of honey and its polyphenols in preventing heart disease: a review. Afr J Tradit Complement Altern Med 7(4):315–321PubMedPubMedCentralGoogle Scholar
  75. Khouri HE, De Luca V, Ibrahim RK (1988) Enzymatic synthesis of polymethylated flavonols in Chrysosplenium americanum. III. Purification and kinetic analysis of S-adenosyl-L-methionine:3-methylquercetin 7-O-methyltransferase. Arch Biochem Biophys 265(1):1–7PubMedCrossRefGoogle Scholar
  76. Kim HY, Kim OH, Sung MK (2003) Effects of phenol-depleted and phenol-rich diets on blood markers of oxidative stress, and urinary excretion of quercetin and kaempferol in healthy volunteers. J Am Coll Nutr 22(3):217–223PubMedCrossRefGoogle Scholar
  77. Kim DS, Ha KC, Kwon DY, Kim MS, Kim HR, Chae SW, Chae HJ (2008) Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol Immunotoxicol 30(2):257–270PubMedCrossRefGoogle Scholar
  78. Kim J-E, Lee D-E, Lee KW, Son JE, Seo SK, Li J, Jung SK, Heo Y-S, Mottamal M, Bode AM (2011) Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prev Res 4(4):582–591CrossRefGoogle Scholar
  79. Kim TH, Ku SK, Lee IC, Bae JS (2012) Anti-inflammatory effects of kaempferol-3-O-sophoroside in human endothelial cells. Inflamm Res 61(3):217–224PubMedCrossRefGoogle Scholar
  80. Kunnumakkara AB, Nair AS, Ahn KS, Pandey MK, Yi Z, Liu M, Aggarwal BB (2007) Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-κB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood 109(12):5112–5121PubMedPubMedCentralCrossRefGoogle Scholar
  81. Landi-Librandi AP, De Oliveira CA, Caleiro Seixas Azzolini AE, Mariko Kabeya L, Del Ciampo JO, Lopes Badra Bentley MV, Lucisano-Valim YM (2011) In vitro evaluation of the antioxidant activity of liposomal flavonols by the HRP-H2O2-luminol system. J Microencapsul 28(4):258–267PubMedCrossRefGoogle Scholar
  82. Lee SJ, Son KH, Chang HW, Do JC, Jung KY, Kang SS, Kim HP (1993) Antiinflammatory activity of naturally occurring flavone and flavonol glycosides. Arch Pharm Res 16(1):25–28CrossRefGoogle Scholar
  83. Lee JY, Jeong KW, Kim W, Heo YS, Kim Y (2009) Binding models of flavonols to human vascular endothelial growth factor receptor 2. Bull Korean Chem Soc 30(9):2083–2086CrossRefGoogle Scholar
  84. Lee J, Lee J, Jung E, Hwang W, Kim Y-S, Park D (2010) Isorhamnetin-induced anti-adipogenesis is mediated by stabilization of β-catenin protein. Life Sci 86(11):416–423PubMedCrossRefGoogle Scholar
  85. Lee S, Shin SY, Lee Y, Park Y, Kim BG, Ahn JH, Chong Y, Lee YH, Lim Y (2011) Rhamnetin production based on the rational design of the poplar O-methyltransferase enzyme and its biological activities. Bioorg Med Chem Lett 21(13):3866–3870PubMedCrossRefGoogle Scholar
  86. Lee W, Woo E, Choi J (2012) Effects of myricetin on the bioavailability of carvedilol in rats. Pharma Biol 50(4):516–522CrossRefGoogle Scholar
  87. Li XY, Kong LX, Li J, He HX, Zhou YD (2013) Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1. Int J Mol Med 31(2):331–338PubMedCrossRefGoogle Scholar
  88. Lian T-W, Wang L, Lo Y-H, Huang I-J, Wu M-J (2008) Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochim Biophys Acta 1781(10):601–609PubMedCrossRefGoogle Scholar
  89. Liu M-M, Zhou L, He P-L, Zhang Y-N, Zhou J-Y, Shen Q, Chen X-W, Zuo J-P, Li W, Ye D-Y (2012) Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy. Eur J Med Chem 52:33–43PubMedCrossRefGoogle Scholar
  90. Lopez-Lazaro M (2002) Flavonoids as anticancer agents: structure-activity relationship study. Curr Med Chem Anticancer Agents 2(6):691–714PubMedCrossRefGoogle Scholar
  91. Luo H, Daddysman MK, Rankin GO, Jiang BH, Chen YC (2010) Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int 10:16PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ma G, Yang C, Qu Y, Wei H, Zhang T, Zhang N (2007a) The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells. Chem Biol Interact 167(2):153–160PubMedCrossRefGoogle Scholar
  93. Ma Z-G, Wang J, Jiang H, Liu T-W, Xie J-X (2007b) Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats. Neuroreport 18(11):1181–1185PubMedCrossRefGoogle Scholar
  94. Ma H, Yuan T, Gonzalez-Sarrias A, Li L, Edmonds ME, Seeram NP (2012) New galloyl derivative from winged sumac (Rhus copallinum) fruit. Nat Prod Commun 7(1):45–46PubMedGoogle Scholar
  95. Maggiolini M, Recchia A, Bonofiglio D, Catalano S, Vivacqua A, Carpino A, Rago V, Rossi R, Ando S (2005) The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor α in human breast cancer cells. J Mol Endocrinol 35(2):269–281PubMedCrossRefGoogle Scholar
  96. Maher P (2006) A comparison of the neurotrophic activities of the flavonoid fisetin and some of its derivatives. Free Radic Res 40(10):1105–1111PubMedCrossRefGoogle Scholar
  97. Maher P (2008) The flavonoid fisetin promotes nerve cell survival from trophic factor withdrawal by enhancement of proteasome activity. Arch Biochem Biophy 476(2):139–144CrossRefGoogle Scholar
  98. Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL (2011a) ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum Mol Genet 20(2):261–270PubMedCrossRefGoogle Scholar
  99. Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D (2011b) Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 6(6):e21226PubMedPubMedCentralCrossRefGoogle Scholar
  100. Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1 Suppl):230S–242SCrossRefGoogle Scholar
  101. March RE, Miao XS, Metcalfe CD (2004) A fragmentation study of a flavone triglycoside, kaempferol-3-O-robinoside-7-O-rhamnoside. Rapid Commun Mass Spectrom 18(9):931–934PubMedCrossRefGoogle Scholar
  102. Markham KR, Geiger H, Jaggy H (1992) Kaempferol-3-O-glucosyl(1–2)rhamnoside from Ginkgo biloba and a reappraisal of other gluco(1–2, 1–3 and 1–4)rhamnoside structures. Phytochemistry 31(3):1009–1011PubMedCrossRefGoogle Scholar
  103. Martini ND, Katerere DR, Eloff JN (2004) Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol 93(2–3):207–212PubMedCrossRefGoogle Scholar
  104. Materska M (2008) Quercetin and its derivatives: chemical structure and bioactivity-a review. Pol J Food Nutr Sci 58(4):407–413Google Scholar
  105. Matsui T, Ito C, Itoigawa M, Okada T, Furukawa H (2009) Effect of natsudaidain isolated from Citrus plants on TNF-α and cyclooxygenase-2 expression in RBL-2H3 cells. J Pharm Pharmacol 61(1):109–114PubMedCrossRefGoogle Scholar
  106. Mattarei A, Biasutto L, Rastrelli F, Garbisa S, Marotta E, Zoratti M, Paradisi C (2010) Regioselective O-derivatization of quercetin via ester intermediates. An improved synthesis of rhamnetin and development of a new mitochondriotropic derivative. Molecules 15(7):4722–4736PubMedPubMedCentralCrossRefGoogle Scholar
  107. Melgarejo E, Medina M, Sánchez-Jiménez F, Botana L, Dominguez M, Escribano L, Orfao A, Urdiales J (2007) (−)-Epigallocatechin-3-gallate interferes with mast cell adhesiveness, migration and its potential to recruit monocytes. Cell Mol Life Sci 64(19–20):2690–2701PubMedCrossRefGoogle Scholar
  108. Melidou M, Riganakos K, Galaris D (2005) Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: the role of iron chelation. Free Radic Biol Med 39(12):1591–1600PubMedCrossRefGoogle Scholar
  109. Méric J-B, Rottey S, Olaussen K, Soria J-C, Khayat D, Rixe O, Spano J-P (2006) Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol/Hematol 59(1):51–64CrossRefGoogle Scholar
  110. Merwid-Ląd A, Trocha MG, Chlebda-Sieragowska E, Sozañski T, Magdalan J, Ksiądzyna D, Szuba A, Kopacz M, Kuÿniar A, Nowak D (2013) Effect of cyclophosphamide and morin-5′-sulfonic acid sodium salt, alone or in combination, on ADMA/DDAH pathway in rats. Pharmacol Rep 65(201):201–207PubMedCrossRefGoogle Scholar
  111. Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26(1–2):107–116PubMedCrossRefGoogle Scholar
  112. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751PubMedGoogle Scholar
  113. Miean KH, Mohamed S (2001a) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49(6):3106–3112PubMedCrossRefGoogle Scholar
  114. Miean KH, Mohamed S (2001b) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49(6):3106–3112PubMedCrossRefGoogle Scholar
  115. Miyata T, De Strihou CVY, Imasawa T, Yoshino A, Ueda Y, Ogura H, Kominami K, Onogi H, Inagi R, Nangaku M (2001) Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney Int 60(6):2351–2359PubMedCrossRefGoogle Scholar
  116. Miyata Y, Sato T, Imada K, Dobashi A, Yano M, Ito A (2008) A citrus polymethoxyflavonoid, nobiletin, is a novel MEK inhibitor that exhibits antitumor metastasis in human fibrosarcoma HT-1080 cells. Biochem Biophys Res Commun 366(1):168–173PubMedCrossRefGoogle Scholar
  117. Monasterio A, Urdaci MC, Pinchuk IV, Lopez-Moratalla N, Martinez-Irujo JJ (2004) Flavonoids induce apoptosis in human leukemia U937 cells through caspase-and caspase-calpain-dependent pathways. Nutr Cancer 50(1):90–100PubMedCrossRefGoogle Scholar
  118. Mukai R, Shirai Y, Saito N, Yoshida K-I, Ashida H (2009) Subcellular localization of flavonol aglycone in hepatocytes visualized by confocal laser scanning fluorescence microscope. Cytotechnology 59(3):177–182PubMedPubMedCentralCrossRefGoogle Scholar
  119. Murray TJ, Yang X, Sherr DH (2006) Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E, and A. Breast Cancer Res 8(2):R17PubMedPubMedCentralCrossRefGoogle Scholar
  120. Nadova S, Miadokova E, Cipak L (2007) Flavonoids potentiate the efficacy of cytarabine through modulation of drug-induced apoptosis. Neoplasma 54(3):202PubMedGoogle Scholar
  121. Nandhakumar R, Salini K, Devaraj SN (2012) Morin augments anticarcinogenic and antiproliferative efficacy against 7, 12-dimethylbenz (a)-anthracene induced experimental mammary carcinogenesis. Mol Cell Biochem 364(1–2):79–92PubMedCrossRefGoogle Scholar
  122. Neelakantam K, Seshadri T (1936) Pigments of cotton flowers. In: Proceedings of the Indian Academy of Sciences—section A. Springer, Basel, pp 54–58CrossRefGoogle Scholar
  123. Nijveldt RJ et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425PubMedCrossRefGoogle Scholar
  124. Noor H, Cao P, Raleigh DP (2012) Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. Prot Sci 21(3):373–382CrossRefGoogle Scholar
  125. Nowak S, Wolbis M (2002) Flavonoids from some species of genus Scopolia Jacq. Acta Pol Pharm 59(4):275–280PubMedGoogle Scholar
  126. Oh HM, Kwon B-M, Baek N-I, Kim S-H, Chung I-S, Park M-H, Park HW, Lee JH, Park HW, Kim EJ (2005) Inhibitory activity of isorhamnetin from Persicaria thunbergii on Farnesyl Protein Transferase. Arch Pharm Res 28(2):169–171PubMedCrossRefGoogle Scholar
  127. Oh SM, Kim YP, Chung KH (2006) Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch Pharm Res 29(5):354–362PubMedCrossRefGoogle Scholar
  128. Om A, Kim J (2008) A quantitative structure-activity relationship model for radical scavenging activity of flavonoids. J Med Food 11(1):29–37PubMedCrossRefGoogle Scholar
  129. Ono K, Li L, Takamura Y, Yoshiike Y, Zhu L, Han F, Mao X, Ikeda T, Takasaki J-I, Nishijo H (2012) Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J Biol Chem 287(18):14631–14643PubMedPubMedCentralCrossRefGoogle Scholar
  130. Otake Y, Walle T (2002) Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9. Drug Metab Dispos 30(2):103–105PubMedCrossRefGoogle Scholar
  131. Ozipek M, Calis I, Ertan M, Ruedi P (1994) Rhamnetin 3-p-coumaroylrhamninoside from Rhamnus petiolaris. Phytochemistry 37(1):249–253PubMedCrossRefGoogle Scholar
  132. Pande V (2001) Antioxidant activity of rhamnazin-4′-O-beta-[apiosyl(1→2)] glucoside in the brain of aged rats. Pharmazie 56(9):749–750PubMedGoogle Scholar
  133. Paoli P, Cirri P, Caselli A, Ranaldi F, Bruschi G, Santi A, Camici G (2013) The insulin-mimetic effect of Morin: a promising molecule in diabetes treatment. Biochim Biophys Acta 1830:3102–3111PubMedCrossRefGoogle Scholar
  134. Park JS, Rho HS, Kim DH, Chang IS (2006a) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem 54(8):2951–2956PubMedCrossRefGoogle Scholar
  135. Park JS, Rho HS, Kim DH, Chang IS (2006b) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem 54(8):2951–2956PubMedCrossRefGoogle Scholar
  136. Park H-H, Lee S, Son H-Y, Park S-B, Kim M-S, Choi E-J, Singh TS, Ha J-H, Lee M-G, Kim J-E (2008) Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res 31(10):1303–1311PubMedCrossRefGoogle Scholar
  137. Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11(1):2–22PubMedGoogle Scholar
  138. Prahalathan P, Kumar S, Raja B (2012a) Effect of morin, a flavonoid against DOCA-salt hypertensive rats: a dose dependent study. Asian Pacific J Trop Biomed 2(6):443–448CrossRefGoogle Scholar
  139. Prahalathan P, Kumar S, Raja B (2012b) Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation. Metabolism 61(8):1087–1099PubMedCrossRefGoogle Scholar
  140. Prasad S, Phromnoi K, Yadav VR, Chaturvedi MM, Aggarwal BB (2010) Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med 76(11):1044PubMedCrossRefGoogle Scholar
  141. Qian S, Chen L (1998) [Studies on the chemical constituents of Citrus reticulata]. Zhong Yao Cai 21(6):301Google Scholar
  142. Ragasa CY, De Luna RD, Cruz WC Jr, Rideout JA (2005) Monoterpene lactones from the seeds of Nephelium lappaceum. J Nat Prod 68(9):1394–1396PubMedCrossRefGoogle Scholar
  143. Ramachandran L, Manu KA, Shanmugam MK, Li F, Siveen KS, Vali S, Kapoor S, Abbasi T, Surana R, Smoot DT (2012) Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J Biol Chem 287(45):38028–38,040PubMedPubMedCentralCrossRefGoogle Scholar
  144. Rao KV, Seshadri T (1946a) Colouring matter of the flowers of Hibiscus vitifolius. In: Proceedings of the Indian Academy of Sciences—section A. Springer, Basel, pp 352–356Google Scholar
  145. Rao KV, Seshadri T (1946b) Constitution of gossypin—part I. In: Proceedings of the Indian Academy of Sciences—section A. Springer, Basel, pp 375–381Google Scholar
  146. Rasilingam D, Duraisamy S, Subramanian R (2008) Anticonvulsant activity of bioflavonoid gossypin. Bangladesh J Pharmacol 4(1):51–54CrossRefGoogle Scholar
  147. Rattanachaikunsopon P, Phumkhachorn P (2007) Bacteriostatic effect of flavonoids isolated from leaves of Psidium guajava on fish pathogens. Fitoterapia 78(6):434–436PubMedCrossRefGoogle Scholar
  148. Richelson LS, Wahner HW, Melton L 3rd, Riggs BL (1984) Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 311(20):1273PubMedCrossRefGoogle Scholar
  149. Saavedra N, Barrientos L, Herrera C, Alvear M, Montenegro G, Salazar L (2011) Effect of Chilean propolis on cariogenic bacteria Lactobacillus fermentum. Cienc Inv Agr 38(1):117–125Google Scholar
  150. Sagara Y, Vanhnasy J, Maher P (2004) Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. J Neurochem 90(5):1144–1155PubMedCrossRefGoogle Scholar
  151. Šarić A, Balog T, Sobočanec S, Kušić B, Šverko V, Rusak G, Likić S, Bubalo D, Pinto B, Reali D (2009) Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem Toxicol 47(3):547–554PubMedCrossRefGoogle Scholar
  152. Sarno S, Moro S, Meggio F, Zagotto G, Dal Ben D, Ghisellini P, Battistutta R, Zanotti G, Pinna LA (2002) Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther 93(2–3):159–168PubMedCrossRefGoogle Scholar
  153. Schmidt A, Li C, Shi F, Jones AD, Pichersky E (2011) Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′-and 7/4′-myricetin O-methyltransferases. Plant Physiol 155(4):1999–2009PubMedPubMedCentralCrossRefGoogle Scholar
  154. Selway JT (1986) Antiviral activity of flavones and flavans. Prog Clin Biol Res 213:521PubMedPubMedCentralGoogle Scholar
  155. Shahabadi N, Mohammadpour M (2012) Study on the interaction of sodium morin-5-sulfonate with bovine serum albumin by spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc 86:191–195PubMedCrossRefPubMedCentralGoogle Scholar
  156. Shi L, Chen J, Wang Y-Y, Sun G, Liu J-N, Zhang J-X, Yan W, Qian C-F, Liu N, Fu Z (2012) Gossypin induces G2/M arrest in human malignant glioma U251 cells by the activation of Chk1/Cdc25C pathway. Cell Mol Neurobiol 32(2):289–296PubMedCrossRefGoogle Scholar
  157. Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008) Three distinct neuroprotective functions of myricetin against glutamate-induced neuronal cell death: involvement of direct inhibition of caspase-3. J Neurosci Res 86(8):1836–1845PubMedCrossRefPubMedCentralGoogle Scholar
  158. Silberberg M, Morand C, Mathevon T, Besson C, Manach C, Scalbert A, Remesy C (2006) The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur J Nutr 45(2):88–96PubMedCrossRefGoogle Scholar
  159. Silbergeld EK, Waalkes M, Rice JM (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med 38(3):316–323PubMedCrossRefPubMedCentralGoogle Scholar
  160. Sivakumar AS, Anuradha CV (2011) Effect of galangin supplementation on oxidative damage and inflammatory changes in fructose-fed rat liver. Chem Biol Interact 193(2):141–148PubMedCrossRefPubMedCentralGoogle Scholar
  161. Steffen Y, Gruber C, Schewe T, Sies H (2008) Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 469(2):209–219PubMedCrossRefGoogle Scholar
  162. Subash S, Subramanian P (2009) Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Mol Cell Biochem 327(1–2):153–161PubMedCrossRefGoogle Scholar
  163. Sultana B, Anwar F (2008) Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem 108(3):879–884PubMedCrossRefPubMedCentralGoogle Scholar
  164. Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activation. Mol Pharmacol 71(6):1703–1714PubMedCrossRefGoogle Scholar
  165. Suomela J-P, Ahotupa M, Yang B, Vasankari T, Kallio H (2006) Absorption of flavonols derived from sea buckthorn (Hippophae rhamnoides L.) and their effect on emerging risk factors for cardiovascular disease in humans. J Agric Food Chem 54(19):7364–7369PubMedCrossRefGoogle Scholar
  166. Tanwar B, Modgil R (2012) Flavonoids: dietary occurrence and health benefits. Spatula DD 2(1):59–68CrossRefGoogle Scholar
  167. Tatsimo SJ, Tamokou Jde D, Havyarimana L, Csupor D, Forgo P, Hohmann J, Kuiate JR, Tane P (2012) Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res Notes 5:158PubMedPubMedCentralCrossRefGoogle Scholar
  168. Teiten M-H, Gaascht F, Dicato M, Diederich M (2012) Targeting the Wingless signaling pathway with natural compounds as chemopreventive or chemotherapeutic agents. Curr Pharm Biotechnol 13(1):245–254PubMedCrossRefGoogle Scholar
  169. Teixeira S, Siquet C, Alves C, Boal I, Marques MP, Borges F, Lima JL, Reis S (2005) Structure–property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Med 39(8):1099–1108PubMedCrossRefGoogle Scholar
  170. Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4(3):147–157CrossRefGoogle Scholar
  171. Tsiklauri L, An G, Ruszaj DM, Alaniya M, Kemertelidze E, Morris ME (2011) Simultaneous determination of the flavonoids robinin and kaempferol in human breast cancer cells by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 55(1):109–113PubMedCrossRefPubMedCentralGoogle Scholar
  172. Van Dijk C, Driessen AJ, Recourt K (2000) The uncoupling efficiency and affinity of flavonoids for vesicles. Biochem Pharmacol 60(11):1593–1600PubMedCrossRefGoogle Scholar
  173. Venkatesan T, Sorimuthu Pillai S (2012) Antidiabetic activity of gossypin, a pentahydroxyflavone glucoside, in streptozotocin-induced experimental diabetes in rats. J Diabetes 4(1):41–46PubMedCrossRefGoogle Scholar
  174. Vishnu Prasad CN, Suma Mohan S, Banerji A, Gopalakrishnapillai A (2009) Kaempferitrin inhibits GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 380(1):39–43PubMedCrossRefGoogle Scholar
  175. Vissiennon C, Nieber K, Kelber O, Butterweck V (2012) Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin—are they prodrugs? J Nutr Biochem 23(7):733–740PubMedCrossRefPubMedCentralGoogle Scholar
  176. Viswanathan S, Thirugnana Sambantham P, Reddy K, Kameswaran L (1984) Gossypin-induced analgesia in mice. Eur J Pharmacol 98(2):289–291PubMedCrossRefGoogle Scholar
  177. Wei Y, Xie Q, Fisher D, Sutherland IA (2011) Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography. J Chromatogr A 1218(36):6206–6211PubMedCrossRefGoogle Scholar
  178. Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21(4):539–573PubMedCrossRefGoogle Scholar
  179. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81(1 Suppl):243S–255SPubMedCrossRefGoogle Scholar
  180. Wu M-Y, Hung S-K, Fu S-L (2011) Immunosuppressive effects of fisetin in ovalbumin-induced asthma through inhibition of NF-κB activity. J Agric Food Chem 59(19):10496–10,504PubMedCrossRefGoogle Scholar
  181. Yang J-G, Liu B-G, Liang G-Z, Ning Z-X (2008) Structure-activity relationship of flavonoids active against lard oil oxidation based on quantum chemical analysis. Molecules 14(1):46–52PubMedPubMedCentralCrossRefGoogle Scholar
  182. Yang W, Sun J, Lu W, Li Y, Shan L, Han W, Zhang WD, Yu B (2010) Synthesis of kaempferol 3-O-(3″,6″-di-O-E-p-coumaroyl)-beta-D-glucopyranoside, efficient glycosylation of flavonol 3-OH with glycosyl o-alkynylbenzoates as donors. J Org Chem 75(20):6879–6888PubMedCrossRefGoogle Scholar
  183. Yang L, Chen Q, Wang F, Zhang G (2011a) Antiosteoporotic compounds from seeds of Cuscuta chinensis. J Ethnopharmacol 135(2):553–560PubMedCrossRefGoogle Scholar
  184. Yang S, Peng L, Su X, Chen F, Cheng Y, Fan G, Pan S (2011b) Bioassay-guided isolation and identification of antifungal components from propolis against Penicillium italicum. Food Chem 127(1):210–215CrossRefGoogle Scholar
  185. Yang Y, Choi JK, Jung CH, Koh HJ, Heo P, Shin JY, Kim S, Park W-S, Shin H-J, Kweon D-H (2011c) SNARE-wedging polyphenols as small molecular botox. Planta Med 78(3):233–236PubMedCrossRefGoogle Scholar
  186. Yu M-S, Lee J, Lee JM, Kim Y, Chin Y-W, Jee J-G, Keum Y-S, Jeong Y-J (2012) Identification of myricetin and scutellarin as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 22:4049–4054PubMedCrossRefGoogle Scholar
  187. Yun BS, Lee IK, Kim JP, Chung SH, Shim GS, Yoo ID (2000) Lipid peroxidation inhibitory activity of some constituents isolated from the stem bark of Eucalyptus globulus. Arch Pharm Res 23(2):147–150PubMedCrossRefGoogle Scholar
  188. Zhen L, Zhu J, Zhao X, Huang W, An Y, Li S, Du X, Lin M, Wang Q, Xu Y (2012) The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res 228(2):359–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. I. Rashid
    • 1
  • M. I. Fareed
    • 1
  • H. Rashid
    • 1
  • H. Aziz
    • 1
  • N. Ehsan
    • 1
  • S. Khalid
    • 1
  • I. Ghaffar
    • 2
  • R. Ali
    • 3
  • A. Gul
    • 1
    Email author
  • Khalid Rehman Hakeem
    • 4
  1. 1.Atta-ur-Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.University College of Pharmacy (UCP), University of the PunjabLahorePakistan
  3. 3.Institute of Basic Medical Sciences, Khyber Medical UniversityPeshawarPakistan
  4. 4.Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations