Potential Roles for Endophytic Fungi in Biotechnological Processes: A Review

  • B. Shankar Naik


Endophytic fungi are the microbes which colonize the interior healthy plant tissues without causing disease. Endophytes have the ability to utilize various organic compounds such as carbon sources, which enable them to play an important role in the degradation of structural components such as leaf litter, wood, lignin components, and also environmental pollutants. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds with potential energy applications which have been described as mycodiesel. Biotransformation can be defined as the use of biological systems to produce chemical changes on compounds which are not easily prepared by the chemical methods. This review has attempted to reveal the biotechnological potential of endophytic fungi.


Endophytic fungi Enzymes Volatiles Biodegradation Biotransformation 


  1. Agustaa A, Wulansaria D, Praptiwia NA, Fathonia A (2014) Biotransformation of Protoberberine Alkaloids by the Endophytic Fungus Coelomycetes AFKR-3 Isolated from Yellow Moonsheed Plant (Archangelisia flava (L.) Merr.). Procedia Chem 13:38–43CrossRefGoogle Scholar
  2. Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocaldium sp. grown on cellulose. Bioresource Tech 102:9718–9722CrossRefGoogle Scholar
  3. Almeida MN, Guimarães VM, Bischoff KM, Falkoski DL, Pereira OL, Gonçalves DSPO, Rezende ST (2011) Cellulases and hemicellulases from endophytic acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165:594–610PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aoyagi S, Onishi H, Machida Y (2007) Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int J Pharm 330:138–145PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274CrossRefGoogle Scholar
  6. Augusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569CrossRefGoogle Scholar
  7. Bastos AC, Magan N (2007) Soil volatile fingerprints: use for discrimination between soil types under different environmental conditions. Sensors Actuators B Chem 125:556–562CrossRefGoogle Scholar
  8. Bezerra JD, Santos MG, Svedese VM, Lima DM, Fernandes MJ, Paiva LM, Souza-Motta CM (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995PubMedCrossRefPubMedCentralGoogle Scholar
  9. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bhagobaty RK, Joshi SR (2012) Enzymatic activity of fungi endophytic on five medicinal plant species of the pristine sacred forests of Meghalaya, India. Biotechnol Bioprocess Eng 17:33–40CrossRefGoogle Scholar
  11. Bianchini LF, Arruda MFC, Vieira SR, Campelo PMS, Grégio AMT, Rosa EAR (2015) Microbial biotransformation to obtain new antifungals. Front Microbiol 6:1433. Scholar
  12. Bills GF, González-Menéndez V, Martín J, Platas G, Fournier J, Persoh D, Stadler M (2012) Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS One 7:46687CrossRefGoogle Scholar
  13. Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503PubMedCrossRefPubMedCentralGoogle Scholar
  14. Borges KB, De Souza Borges W, Pupo MT, Bonato PS (2007) Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Appl Microbiol Biotechnol 77(3):669–674PubMedCrossRefPubMedCentralGoogle Scholar
  15. Borges KB, Bonato PS (2011) Enantioselective biotransformation of propranolol to the active metabolite 4-hydroxypropranolol by endophytic fungi. Quim Nova 34(8):1354–1357CrossRefGoogle Scholar
  16. Borges W, Borges K, Bonato P, Said S, Pupo MT (2009a) Endo-phytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163CrossRefGoogle Scholar
  17. Borges KB, Borges WS, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG (2009b) Stereoselective biotransformation using fungi as biocatalysts. Tetrahedron Asymmetry 20:385–397CrossRefGoogle Scholar
  18. Borges KB, Borges WS, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5- sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharm Biomed Anal 46:945–952PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bryant MK, May KJ, Bryan GT, Scott B (2007) Functional analysis of a β-1,6-glucanase gene from the grass endophytic fungus Epichloë festucae. Fungal Genet Biol 44(8):808–817PubMedCrossRefPubMedCentralGoogle Scholar
  20. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16CrossRefGoogle Scholar
  21. Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89(5):1653–1663PubMedCrossRefPubMedCentralGoogle Scholar
  22. Contesini FJ, Lopes DB, Macedo GA, Nascimento MG, Carvalho PO (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171CrossRefGoogle Scholar
  23. Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL, (et al) (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478PubMedCrossRefPubMedCentralGoogle Scholar
  24. Costa LSR, Azevedo JL, Pereira JO, Carneiro ML, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615CrossRefGoogle Scholar
  25. Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741PubMedCrossRefPubMedCentralGoogle Scholar
  26. Devi NN, Prabakaran JJ, Wahab F (2012) Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac J Trop Biomed 2:1280–1284CrossRefGoogle Scholar
  27. Evidente A, Maddau L, Spanu E, Franceschini A, Lazzaroni S, Motta AJ (2003) Diplopyrone, a new phytotoxic tetrahydropyranpyran-2-one produced by Diplodia mutila, a fungus pathogen of cork oak. J Nat Prod 66:313PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fernandes MLM, Saad EB, Meira JA, Ramos LP, Mitchell DA, Krieger N (2007) Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J Mol Catal B Enzym 44:8–13CrossRefGoogle Scholar
  29. Fu SB, Yang JS, Cui J, FengX SD (2011) Biotransformation of ursolic acid by an endophytic fungus from medicinal plant Huperzia serrata. Chem Pharm Bull 59(9):1180–1182PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gan Z, Yang J, Tao N, Liang L, Mi Q, Li J, Zhang K-Q (2007) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317PubMedCrossRefPubMedCentralGoogle Scholar
  31. Glenn AE, Meredith FI, Morrison WH, Bacon CW (2003) Identification of intermediate and branch metabolites resulting from biotransformation of 2-benzoxazolinone by Fusarium verticillioides. Appl Environ Microbiol 69:3165–3169PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gog A, Roman M, Tos M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification – current state and perspectives. Renew Energy 39:10–16CrossRefGoogle Scholar
  33. Gonda S, Kiss-Szikszaib A, Szűcsa Z, Ballaa B, Vasasa G (2016) Efficient biotransformation of non-steroid anti-inflammatory drugs by endophytic and epiphytic fungi from dried leaves of a medicinal plant, Plantago lanceolata L. Int Biodet Biodeg 108:115–121CrossRefGoogle Scholar
  34. Grünig CR, Duò A, Sieber TN, Holdenrieder O (2008) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.1.-Acephala applanata species complex. Mycologia 100:47–67PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gunatilaka AAL (2006) Natural products from plant-associated micro- organisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guo LD, Huang GR, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. J Int Plant Biol 50:997–1003CrossRefGoogle Scholar
  37. Hamada H, Kondo Y, Ishihara K, Nakajima N, Hamada H, Kurihara R, Hirata T (2003) Stereoselective biotransformation of limonene and limonene oxide by Cyanobacterium, Synechococcus sp. PCC 7942. J BiosciBioeng 96:481–584Google Scholar
  38. Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8:1305–1322PubMedPubMedCentralCrossRefGoogle Scholar
  39. Harper JK, Arif AM, Ford EJ et al (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476CrossRefGoogle Scholar
  40. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251CrossRefGoogle Scholar
  41. He DX, Li GH, Gu XT, Zhang L, Mao AQ, Wei J, Liu DQ, Shi GY, Ma X (2016) A new agent developed by biotransformation of polyphyllin VII inhibits chemoresistance in breast cancer. Oncotarget 7(22):31814–31824PubMedGoogle Scholar
  42. Hegde SV, Ramesha A, Srinvas C (2011) Optimization of amylase production from an endophytic fungi Discosia sp. isolated from Calophyllum inophyllum. Int J Agric Technol 7:805–813Google Scholar
  43. Jordaan A, Taylor JE, Rossenkhan R (2006) Occurrence and possible role of endophytic fungi associated with seed pods of Colophospermum mopane (Fabaceae) in Botswana. S Afr J Bot 72:245–255CrossRefGoogle Scholar
  44. Kellner H, Vandenbol M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One 5(6):10971. Scholar
  45. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol 51:773–776PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8(2):1–8Google Scholar
  48. Kumar V, Sahai V, Bisaria VS (2012) Production of amylase and chlamydospores by Piriformospora indica, a root endophytic fungus biocatalysis and agricultural. Biotechnology 1:124–128Google Scholar
  49. Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Factories 7(1):32CrossRefGoogle Scholar
  50. Lee J, Lobkovsky E, Pliam NB, Strobel GA, Clardy JJ (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076CrossRefGoogle Scholar
  51. Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604PubMedCrossRefPubMedCentralGoogle Scholar
  52. Li JY, Strobel GA, Harper JK, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis quercina. Org Lett 2:767PubMedCrossRefPubMedCentralGoogle Scholar
  53. Li N, Zong MH (2010) Lipases from the genus Penicillium: production, purification, characterization and applications. J Mol Catal B Enzym 66:43–54CrossRefGoogle Scholar
  54. Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from DoiSuthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112PubMedCrossRefPubMedCentralGoogle Scholar
  55. Luo SL, Dang LZ, Li JF, Zou CG, Zhang KQ, Li GH (2013) Biotransformation of saponins by endophytes isolated from Panax notoginseng. Chem Biodivers 10(11):2021–2031PubMedCrossRefPubMedCentralGoogle Scholar
  56. Maciel MJM, Silva ACE, Ribeiro HCT (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13:6Google Scholar
  57. Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80Google Scholar
  58. Mends MT, Yu E, Strobel GA, Hassan SRU, Booth E, Geary B, Sears J, Taatjes CA, Hadi M (2012) An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. J Pet Environ Biotechnol 3:3Google Scholar
  59. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277PubMedCrossRefPubMedCentralGoogle Scholar
  60. Mohamed SA, Abdel-Mageed HM, Tayel SA, El-Nabrawi MA, Fahmy AS (2011) Characterization of Mucor racemosus lipase with potential application for the treatment of cellulite. Process Biochem 46:642–648CrossRefGoogle Scholar
  61. Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:288–294Google Scholar
  62. Moy M, Li HM, Sullivan R, White JF Jr, Belanger FC (2002) Endophytic fungal β-1,6-glucanase expression in the infected host grass. Plant Physiol 130:1298–1308PubMedPubMedCentralCrossRefGoogle Scholar
  63. Oliveira ACD, Fernandes ML, Mariano AB (2014) Production and characterization of an extracellular lipase from Candida guilliermondii. Braz J Microbiol 45(4):1503–1511PubMedCrossRefPubMedCentralGoogle Scholar
  64. Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegrad 57:129–135CrossRefGoogle Scholar
  65. Osono T, Takeda H (2001) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37:17–23CrossRefGoogle Scholar
  66. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Thomaz-Soccol V (1999) The realm microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131PubMedPubMedCentralGoogle Scholar
  67. Park MS, Ahn J, Choi GJ, Choi YH, Jang KS, Kim JC (2010) Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. Plant Pathol J 26:253–259CrossRefGoogle Scholar
  68. Pimentel MR, Molina G, Dionısio AP, Marosticá MR Jr, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286. Scholar
  69. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefPubMedCentralGoogle Scholar
  70. Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kuhn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902PubMedCrossRefPubMedCentralGoogle Scholar
  71. Pulici M, Sugawara F, Koshino H, Uzawa J, Yoshida S, Lobkovsky E, Clardy JJ (1996) A new isodrimeninol from Pestalotiopsis sp. J Org Chem 61:2122CrossRefGoogle Scholar
  72. Pupo MT, Borges KB, Borges WS, Bonato PS (2008) Fungal biotransformations: a powerful tool in drug metabolism studies. In: Saikai R, Bezbaruah RL, Bora TC (eds) Microbial biotechnology. New India Publishing Agency, New Delhi, pp 47–66Google Scholar
  73. Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7CrossRefGoogle Scholar
  74. Rajulu MBG, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, Gueddari NEE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53CrossRefGoogle Scholar
  75. Reddy PV, Lam CK, Belanger FC (1996) Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity. Plant Physiol 111:1209–1218PubMedPubMedCentralCrossRefGoogle Scholar
  76. Redman RS, Sheehan KB, Stout RG, Rodrigues RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581PubMedCrossRefPubMedCentralGoogle Scholar
  77. Regalado AP, Pinheiro C, Vidal S, Chaves I, Ricardo CPP, Rodrigues-Pousada C (2000) The Lupinus albus class-III chitinase gene, IF-3, is constitutively expressed in vegetative organs and developing seeds. Planta 210:543–550PubMedCrossRefPubMedCentralGoogle Scholar
  78. Riyaz-Ul-Hassan S (2013) An Endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23(1):29–35PubMedCrossRefPubMedCentralGoogle Scholar
  79. Rodrigues KF (1996) In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. American Phytopathological Society Press, San Diego, CA, p 121Google Scholar
  80. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dant-Zler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittrmiller PA, Nunez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, MPN V, Boulanger LA, Slack CB, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  81. Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5CrossRefGoogle Scholar
  82. Salihu A, Alam MZ, AbdulKarim MI, Salleh HM (2012) Lipase production: an insight in the utilization of renewable agricultural residues. Resour Conserv Recycling 58:36–44CrossRefGoogle Scholar
  83. Salihu A, Alam MZ, Karim MIA, Salleh HM (2011) Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design. J Mol Catal B Enzym 69:66–73CrossRefGoogle Scholar
  84. Saranpuetti C, Tanaka M, Sone T, Asano K, Tomita F (2006) Determination of enzymes from Colletotrichum sp. AHU9748 essential for lepidimoide production from okra polysaccharide. J Biosci Bioeng 102:452–456PubMedCrossRefPubMedCentralGoogle Scholar
  85. Schalchli H, Tortella GR, Rubilar O, Parra L, Hormazabal E, Quiroz A (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36(1):144–152PubMedCrossRefPubMedCentralGoogle Scholar
  86. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686PubMedCrossRefPubMedCentralGoogle Scholar
  87. Schulz B, Boyle C, Draeger S, Römmert A, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  88. Shankar Naik B, Shashikala J, Krishnamurthy YL (2006) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 3:290–296Google Scholar
  89. Shankar Naik B, Shashikala J, Krishnamurthy YL (2008) Diversity of endophytic fungal communities in shrubby medicinal plants of Western Ghat region, Southern India. Fungal Ecol 1:89–93CrossRefGoogle Scholar
  90. Sharma R, Chisti Y, Banerjeea UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv 19:627–662PubMedCrossRefPubMedCentralGoogle Scholar
  91. Shibuya H, Kitamura C, Maehara S, Nagahata M, Winarno H, Simanjuntak P, Kim HS, Wataya Y, Ohashi K (2003) Transformation of cinchona alkaloids into 1-N-oxide derivatives by endophytic Xylaria sp. isolated from Cinchona pubescens. Chem Pharm Bull 51:71–74PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sieber TN, Sieber-Canavesis F, Petrini O, Ekramoddoullah AK, Dorworth CE (1991) Characterization of Canadian and European Melanconium from some Alnus species by morphological, cultural, and biochemical studies. Can J Bot 69:2170–2176CrossRefGoogle Scholar
  93. Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739PubMedCrossRefPubMedCentralGoogle Scholar
  94. Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922CrossRefGoogle Scholar
  95. Strobel GA (2003) Endophytes as sources of bioactive products. Microb Infect 5:535–544CrossRefGoogle Scholar
  96. Strobel GA (2014a) The story of mycodiesel. Curr Opin Microbiol 19:52–58PubMedCrossRefPubMedCentralGoogle Scholar
  97. Strobel GA (2014b) The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbons. Biofuels 5:447–455CrossRefGoogle Scholar
  98. Strobel GA, Dirksie E, Sears J, Markworth C (2001) Volatile microbials from a novel endophytic fungus. Microbiology 147:2943–2950PubMedCrossRefPubMedCentralGoogle Scholar
  99. Strobel GA, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B (1998) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi Pine, Wollemia nobilis. Aust J Bot 45:1073CrossRefGoogle Scholar
  100. Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffen M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328PubMedCrossRefPubMedCentralGoogle Scholar
  101. Strobel GA, Singh SK, Hassan RUL, Mitchell A, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Lett 320:87–94CrossRefGoogle Scholar
  102. Strobel GA, Tomsheck A, Geary B, Spakowicz D, Strobel S, Mattner S, Mann R (2010) Endophytic strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology 1:187–194CrossRefGoogle Scholar
  103. Strobel GA, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440PubMedCrossRefPubMedCentralGoogle Scholar
  104. Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213–1221PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedCrossRefPubMedCentralGoogle Scholar
  106. Tanaka M, Yoshimura M, Suto M, Yokota A, Asano K, Sukara E, Tomita F (2002) Production of lepidimoide by an endophytic fungus from polysaccharide extracted from Abelmoschus sp.: identification of the product and the organism producing it. J Biosci Bioeng 93:531–536PubMedCrossRefPubMedCentralGoogle Scholar
  107. Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204Google Scholar
  108. Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, SearsJ LO, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914PubMedCrossRefPubMedCentralGoogle Scholar
  109. Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219Google Scholar
  110. van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch converting enzymes of the α−amylase family. J Biotechnol 94(2):137–155PubMedCrossRefPubMedCentralGoogle Scholar
  111. Verza M, Arakawa NS, Lopes NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignin by the endophytic fungus Phomopsis sp. J Braz Chem Soc 20:195–200CrossRefGoogle Scholar
  112. Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215CrossRefGoogle Scholar
  113. Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wei GH, Yang XY, Zhang JW, Gao JM, Ma YQ, Fu YY, Wang P (2007) Rhizobialide: a new stearolactone produced by Mesorhizobium sp. CCNWGX022, a rhizobial endophyte from Glycyrrhiza uralensis. Chem Biodivers 4:893–898PubMedCrossRefPubMedCentralGoogle Scholar
  116. Weihua Q, Hongzhang C (2008) An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. Bioresour Technol 99:5480–5484PubMedCrossRefPubMedCentralGoogle Scholar
  117. Werner C, Petrini O, Hesse M (1997) Degradation of the polyamine alkaloid aphelandrine by endophytic fungi isolated from Aphelandra tetragona. FEMS Microbiol Lett 155(2):147–153PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leewenhoek 81:357–364CrossRefGoogle Scholar
  119. Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM (2016) Rapid discovery and functional characterization of Terpene synthases from four Endophytic Xylariaceae. PLoS One 11(2):e0146983. Scholar
  120. Xiao X, Luo SL, Zeng GM, Wei WZ, Wan Y, Chen L, Guo H, Cao Z, Yang LX, Chen JL, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674PubMedCrossRefGoogle Scholar
  121. Yue Q, Bacon CW, Richardson MD (1998) Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by Fusarium moniliforme. Phytochemistry 48:451–454CrossRefGoogle Scholar
  122. Zhang JY, Tao LY, Liang YJ, Chen LM, Mi YJ, Zheng LS (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8:1469–1481PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhou L, Zhao J, Xu L, Huang Y, Ma Z, Wang J, Jiang W (2009) Antimicrobial compounds produced by plant endophytic fungi. In: De Costa P, Bezerra P (eds) Fungicides: chemistry, environmental impact and health effects, vol 91. Nova Science Publishers, New York, pp 116–119Google Scholar
  124. Zikmundova M, Drandarov K, Bigler L, Hesse A, Werner C (2002) Biotransformation of 2-Benzoxazolinone and 2-Hydroxy-1,4-Benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 48(3):4863–4870CrossRefGoogle Scholar
  125. Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. Shankar Naik
    • 1
    • 2
  1. 1.Department of P.G. Studies and Research in Applied Botany, Bio-Science ComplexKuvempu UniversityShimogaIndia
  2. 2.Department of BiologyGovt Science CollegeChikmagalurIndia

Personalised recommendations