Seagrass Detection in Coastal Water Through Deep Capsule Networks

  • Kazi Aminul IslamEmail author
  • Daniel Pérez
  • Victoria Hill
  • Blake Schaeffer
  • Richard Zimmerman
  • Jiang Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11257)


Seagrass is an important factor to balance marine ecological systems, and there is a great interest in monitoring its distribution in different parts of the world. This paper presents a deep capsule network for classification of seagrass in high-resolution multispectral satellite images. We tested our method on three satellite images of the coastal areas in Florida and obtained better performances than those achieved by the traditional deep convolutional neural network (CNN) model. We also propose a few-shot deep learning strategy to transfer knowledge learned by the capsule network from one location to another for seagrass detection, in which the capsule network’s reconstruction capability is utilized to generate new artificial data for fine-tuning the model at new locations. Our experimental results show that the proposed model achieves superb performances in cross-validation on three satellite images collected in Florida as compared to support vector machine (SVM) and CNN.


Seagrass detection Convolutional neural network Capsule network Deep learning Remote sensing Transfer learning 


  1. 1.
    Floridadep: Florida coastal office. Accessed 20 Oct 2017
  2. 2.
    MyFWC: Florida fish and wildlife conservation commission. Accessed 20 Oct 2017
  3. 3.
    Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule networks. arXiv preprint arXiv:1802.10200 (2018)
  4. 4.
    Banerjee, D., et al.: A deep transfer learning approach for improved post-traumatic stress disorder diagnosis. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 11–20. IEEE (2017)Google Scholar
  5. 5.
    Chowdhury, M.M.U., Hammond, F., Konowicz, G., Xin, C., Wu, H., Li, J.: A few-shot deep learning approach for improved intrusion detection. In: IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 2017, pp. 456–462. IEEE (2017)Google Scholar
  6. 6.
    Dahdouh-Guebas, F., Coppejans, E., Van Speybroeck, D.: Remote sensing and zonation of seagrasses and algae along the Kenyan coast. Hydrobiologia 400, 63–73 (1999)CrossRefGoogle Scholar
  7. 7.
    Hill, V.J., Zimmerman, R.C., Bissett, W.P., Dierssen, H., Kohler, D.D.: Evaluating light availability, seagrass biomass, and productivity using hyperspectral airborne remote sensing in Saint Josephs Bay, Florida. Estuaries Coasts 37(6), 1467–1489 (2014)CrossRefGoogle Scholar
  8. 8.
    Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)CrossRefGoogle Scholar
  9. 9.
    Hinton, G., Frosst, N., Sabour, S.: Matrix capsules with EM routing (2018)Google Scholar
  10. 10.
    Ibanez, D.P., Li, J., Shen, Y., Dayanghirang, J., Wang, S., Zheng, Z.: Deep learning for pulmonary nodule CT image retrievalâan online assistance system for novice radiologists. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1112–1121. IEEE (2017)Google Scholar
  11. 11.
    Iesmantas, T., Alzbutas, R.: Convolutional capsule network for classification of breast cancer histology images. arXiv preprint arXiv:1804.08376 (2018)
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  13. 13.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  14. 14.
    Li, F., Tran, L., Thung, K.-H., Ji, S., Shen, D., Li, J.: Robust deep learning for improved classification of AD/MCI patients. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 240–247. Springer, Cham (2014). Scholar
  15. 15.
    Li, F., Tran, L., Thung, K.H., Ji, S., Shen, D., Li, J.: A robust deep model for improved classification of AD/MCI patients. IEEE J. Biomed. Health Inform. 19(5), 1610–1616 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, F., et al.: Deep models for engagement assessment with scarce label information. IEEE Trans. Hum.-Mach. Syst. 47(4), 598–605 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, R., et al.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Cham (2014). Scholar
  18. 18.
    Li, R., Liu, J.K., Sukcharoenpong, A., Yuan, J., Zhu, H., Zhang, S.: A systematic approach toward detection of seagrass patches from hyperspectral imagery. Mar. Geodesy 35(3), 271–286 (2012)CrossRefGoogle Scholar
  19. 19.
    Manessa, M.D.M., Kanno, A., Sekine, M., Ampou, E.E., Widagti, N., As-syakur, A.R.: Shallow-water benthic identification using multispectral satellite imagery: investigation on the effects of improving noise correction method and spectral cover. Remote Sens. 6(5), 4454–4472 (2014)CrossRefGoogle Scholar
  20. 20.
    Ning, R., Wang, C., Xin, C., Li, J., Wu, H.: DeepMag: sniffing mobile apps in magnetic field through deep convolutional neural networks. In: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–10. IEEE (2018)Google Scholar
  21. 21.
    Oguslu, E., et al.: Detection of seagrass scars using sparse coding and morphological filter. Remote Sens. Environ. 213, 92–103 (2018)CrossRefGoogle Scholar
  22. 22.
    Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1717–1724. IEEE (2014)Google Scholar
  23. 23.
    Pasqualini, V., et al.: Use of spot 5 for mapping seagrasses: an application to posidonia oceanica. Remote Sens. Environ. 94(1), 39–45 (2005)CrossRefGoogle Scholar
  24. 24.
    Perez, D., et al.: Deep learning for effective detection of excavated soil related to illegal tunnel activities. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), pp. 626–632. IEEE (2017)Google Scholar
  25. 25.
    Perez, D., Islam, K.A., Schaeffer, B., Zimmerman, R., Hill, V., Li, J.: Deepcoast: Quantifying seagrass distribution in coastal water through deep capsule networks. In: Lai, J.-H., et al. (eds.) The First Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2018. LNCS, vol. 11257, pp. 404–416. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  26. 26.
    Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules, pp. 3859–3869 (2017)Google Scholar
  27. 27.
    Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)CrossRefGoogle Scholar
  28. 28.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)Google Scholar
  30. 30.
    Vela, A., et al.: Use of spot 5 and ikonos satellites for mapping biocenoses in a tunisian lagoon (2005)Google Scholar
  31. 31.
    Weiss, K.R., Khoshgoftaar, T.M.: An investigation of transfer learning and traditional machine learning algorithms. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 283–290. IEEE (2016)Google Scholar
  32. 32.
    Xi, E., Bing, S., Jin, Y.: Capsule network performance on complex data. arXiv preprint arXiv:1712.03480 (2017)
  33. 33.
    Yang, D., Yang, C.: Detection of seagrass distribution changes from 1991 to 2006 in xincun bay, hainan, with satellite remote sensing. Sensors 9(2), 830–844 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA
  2. 2.Department of Modeling, Simulation and Visualization EngineeringOld Dominion UniversityNorfolkUSA
  3. 3.Department of Ocean, Earth and Atmospheric SciencesOld Dominion UniversityNorfolkUSA
  4. 4.Office of Research and DevelopmentU.S. Environmental Protection AgencyDurhamUSA

Personalised recommendations