Advertisement

Deep Supervised Auto-encoder Hashing for Image Retrieval

  • Sanli Tang
  • Haoyuan Chi
  • Jie YangEmail author
  • Xiaolin Huang
  • Masoumeh Zareapoor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11257)

Abstract

Image hashing approaches map high dimensional images to compact binary codes that preserve similarities among images. Although the image label is important information for supervised image hashing methods to generate hashing codes, the retrieval performance will be limited according to the performance of the classifier. Therefore, an effective supervised auto-encoder hashing method (SAEH) is proposed to generate low dimensional binary codes in a point-wise manner through deep convolutional neural network. The auto-encoder structure in SAEH is designed to simultaneously learn image features and generate hashing codes. Moreover, some extra relaxations for generating binary hash codes are added to the objective function. The extensive experiments on several large scale image datasets validate that the auto-encoder structure can indeed increase the performance for supervised hashing and SAEH can achieve the best image retrieval results among other prominent supervised hashing methods.

Keywords

Image retrieval Image hashing Supervised learning Deep neural network Convolutional auto-encoder 

References

  1. 1.
    Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016)Google Scholar
  2. 2.
    Cao, Y., Long, M., Wang, J., Zhu, H., Wen, Q.: Deep quantization network for efficient image retrieval. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 3457–3463 (2016)Google Scholar
  3. 3.
    Chang, S.F., Jiang, Y.G., Ji, R., Wang, J., Liu, W.: Supervised hashing with kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2074–2081 (2012)Google Scholar
  4. 4.
    Chollet, F.: Keras (2015). https://github.com/fchollet/keras
  5. 5.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, pp. 886–893 (2005)Google Scholar
  6. 6.
    Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture variational autoencoders (2016)Google Scholar
  7. 7.
    Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)
  8. 8.
    En, S., Crémilleux, B., Jurie, F.: Unsupervised deep hashing with stacked convolutional autoencoders. Working paper or preprint, May 2017. https://hal.archives-ouvertes.fr/hal-01528097
  9. 9.
    He, K., Zhang, X., Ren, S.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  10. 10.
    Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)Google Scholar
  11. 11.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  12. 12.
    Larsen, A.B.L., Snderby, S.K.: Larochelle: autoencoding beyond pixels using a learned similarity metric, pp. 1558–1566 (2015)Google Scholar
  13. 13.
    Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 817–824 (2011)Google Scholar
  14. 14.
    Lcun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  15. 15.
    Li, K., Qi, G.J., Ye, J., Yusuph, T., Hua, K.A.: Semantic image retrieval with feature space rankings. Int. J. Semant. Comput. 11(2), 171–192 (2017)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Computer Vision and Pattern Recognition, pp. 2064–2072 (2016)Google Scholar
  17. 17.
    Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, 28 June–July, pp. 1–8 (2011)Google Scholar
  18. 18.
    Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. Computer Science (2015)Google Scholar
  19. 19.
    Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: Nips Workshop on Deep Learning and Unsupervised Feature Learning (2011)Google Scholar
  20. 20.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefGoogle Scholar
  21. 21.
    Pu, Y., Gan, Z., Henao, R.: Variational autoencoder for deep learning of images, labels and captions (2016)Google Scholar
  22. 22.
    Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 3546–3554. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks.pdf
  23. 23.
    Shao, J., Wu, F., Ouyang, C., Zhang, X.: Sparse spectral hashing. Pattern Recognit. Lett. 33(3), 271–277 (2012)CrossRefGoogle Scholar
  24. 24.
    Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)Google Scholar
  25. 25.
    Wang, J., Zhang, T.: A survey on learning to hash. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2016)Google Scholar
  26. 26.
    Xia, R., Pan, Y., Lai, H., Liu, C.: Supervised hashing for image retrieval via image representation learning. In: AAAI, vol. 1, p. 2 (2014)Google Scholar
  27. 27.
    Yang, H.F., Lin, K., Chen, C.S.: Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2015)Google Scholar
  28. 28.
    Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Computer Vision and Pattern Recognition, pp. 192–199 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sanli Tang
    • 1
  • Haoyuan Chi
    • 1
  • Jie Yang
    • 1
    Email author
  • Xiaolin Huang
    • 1
  • Masoumeh Zareapoor
    • 1
  1. 1.Institution of Image Processing and Pattern RecognitionShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations