Advertisement

Processing of \(Z^+\)-numbers Using the k Nearest Neighbors Method

  • Marcin PlucińskiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)

Abstract

The paper presents that with the application of \(Z^+\)-numbers arithmetic, the k nearest neighbors method can be adapted to various types of data. Both, the learning data and the input data may be in the form of the crisp number, interval, fuzzy or \(Z^+\)-number. The paper discusses the methods of performing arithmetic operations on uncertain data of various types and explains how to use them in the kNN method. Experiments show that the method works correctly and gives credible results.

Keywords

\(Z^+\) numbers arithmetic Fuzzy numbers arithmetic k nearest neighbors method 

References

  1. 1.
    Zadeh, L.A.: A note on Z-numbers. Inf. Sci. 181, 2923–2932 (2011)CrossRefGoogle Scholar
  2. 2.
    Atkeson, C.G., Moore, A.W., Schaal, S.A.: Locally weighted learning. Artif. Intell. Rev. 11, 11–73 (1997)CrossRefGoogle Scholar
  3. 3.
    Cichosz, P.: Learning Systems. WNT Publishing House, Warsaw (2000). [in Polish]zbMATHGoogle Scholar
  4. 4.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. The MIT Press, Cambridge (2001)Google Scholar
  5. 5.
    Kordos, M., Blachnik, M., Strzempa, D.: Do we need whatever more than k-NN? In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6113, pp. 414–421. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Korzeń, M., Klęsk, P.: Sets of approximating functions with finite Vapnik-Czervonenkis dimension for nearest-neighbours algorithm. Pattern Recogn. Lett. 32, 1882–1893 (2011)CrossRefGoogle Scholar
  7. 7.
    Pluciński, M.: Application of the information-gap theory for evaluation of nearest neighbours method robustness to data uncertainty. Przegląd Elektrotechniczny 88(10b), 272–275 (2012)Google Scholar
  8. 8.
    Pluciński, M., Pietrzykowski, M.: Application of the \(k\) nearest neighbors method to fuzzy data processing. Przegląd Elektrotechniczny 93(1), 77–81 (2017)Google Scholar
  9. 9.
    Aliev, R.A., Huseynov, O.H., Aliyev, R.R., Alizadeh, A.A.: The Arithmetic of Z-Numbers: Theory and Applications. World Scientific, Singapore (2015)CrossRefGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grzegorzewski, P.: Metrics and orders in space of fuzzy numbers. Fuzzy Sets Syst. 97, 83–94 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Piegat, A.: Fuzzy Modeling and Control. Physica, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefGoogle Scholar
  14. 14.
    Dutta, P., Boruah, H., Ali, T.: Fuzzy arithmetic with and without using \(\alpha \)-cut method: a comparative study. Int. J. Latest Trends Comput. 2(1), 99–107 (2011)Google Scholar
  15. 15.
    Hanss, M.: Applied Fuzzy Arithmetic. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  16. 16.
    Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York (1991)zbMATHGoogle Scholar
  17. 17.
    Springer, M.D.: The Algebra of Random Variables. John Wiley & Sons, New York (1979)zbMATHGoogle Scholar
  18. 18.
    Jaroszewicz, S., Korzeń, M.: Arithmetic operations on independent random variables: a numerical approach. SIAM J. Sci. Comput. 34(3), 1251–1265 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Diamond, P., Rosenfeld, A.: Metric spaces of fuzzy sets. Fuzzy Sets Syst. 35, 241–249 (1990)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tang, W., Li, X., Zhao, R.: Metric spaces of fuzzy variables. Comput. Ind. Eng. 57, 1268–1273 (2009)CrossRefGoogle Scholar
  21. 21.
    Rachev S.T., Klebanov L., Stoyanov S.V., Fabozzi F.: The Methods of Distances in the Theory of Probability and Statistics. Springer Science and Business Media (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations