Partial Face Images Classification Using Geometrical Features

  • Piotr MilczarskiEmail author
  • Zofia Stawska
  • Shane Dowdall
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)


In the paper, we have focused on the problem of choosing the best set of features in the task of gender classification/recognition. Choosing a minimum set of features, that can give satisfactory results, is important in the case where only a part of the face is visible. Then, the minimum set of features can simplify the classification process to make it useful in video analysis, surveillance video analysis as well as for IoT and mobile applications. We propose four partial view areas and show that the classification accuracy is lower by maximum 5% than in using full view ones and we compare the results using 5 different classifiers (SVM, 3NN, C4.5, NN, Random Forrest) and 2 test sets of images. That is why the proposed areas might be used while classifying or recognizing veiled or partially hidden faces.


Geometric facial features Image processing Surveillance video analysis Biometrics Gender classification Support vector machines K-Nearest neighbors Neural networks Decision tree Random forrest 


  1. 1.
    Alexandre, L.A.: Gender recognition: a multiscale decision fusion approach. Pattern Recogn. Lett. 31(11), 1422–1427 (2010)CrossRefGoogle Scholar
  2. 2.
    Andreu, Y., Mollineda, R.A., Garcia-Sevilla, P.: Gender recognition from a partial view of the face using local feature vectors. In: Pattern Recognition and Image Analysis. Springer Verlag (2009)Google Scholar
  3. 3.
    Castrillon-Santana, M., Lorenzo-Navarro, J., Ramon-Balmaseda, E.: On using periocular biometric for gender classification in the wild. Pattern Recogn. Lett. 82, 181–189 (2016)CrossRefGoogle Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Demirkus, M., Toews, M., Clark, J.J., Arbel, T.: Gender classification from unconstrained video sequences. In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 55–62 (2010)Google Scholar
  6. 6.
    Fellous, J.M.: Gender discrimination and prediction on the basis of facial metric information. Vision. Res. 37(14), 1961–1973 (1997)CrossRefGoogle Scholar
  7. 7.
    Fok, T.H.C., Bouzerdoum, A.: A gender recognition system using shunting inhibitory convolutional neural networks. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 5336–5341 (2006)Google Scholar
  8. 8.
    Hasnat, A., Haider, S., Bhattacharjee, D., Nasipuri, M.: A proposed system for gender classification using lower part of face image. In: International Conference on Information Processing, pp. 581–585 (2015)Google Scholar
  9. 9.
    Hassanat, A.B., Prasath, V.B.S., Al-Mahadeen, B.M., Alhasanat, S.M.M.: Classification and gender recognition from veiled-faces. Int. J. Biometrics 9(4), 347–364 (2017)CrossRefGoogle Scholar
  10. 10.
    Humanæ project. Accessed 15 Nove 2017
  11. 11.
    Jain, A., Huang, J., Fang, S.: Gender identification using frontal facial images in multimedia and expo. In: IEEE International Conference on ICME 2005, p. 4 (2005)Google Scholar
  12. 12.
    Kawano, T., Kato, K., Yamamoto, K.: An analysis of the gender and age differentiation using facial parts. In: IEEE International Conference on Systems Man and Cybernetics, vol. 4, 10–12 October, pp. 3432–3436 (2005)Google Scholar
  13. 13.
    Kumari, S., Bakshi, S., Majhi B.: Periocular gender classification using global ICA features for poor quality images. In: Proceedings of the International Conference on Modeling, Optimization and Computing (2012)Google Scholar
  14. 14.
    Lyle, J., Miller, P., Pundlik, S.: Soft biometric classification using periocular region features. In: Fourth IEEE International Conference Biometrics: Theory Applications and Systems (BTAS) (2010)Google Scholar
  15. 15.
    Mäkinen, E., Raisamo, R.: An experimental comparison of gender classification methods. Pattern Recogn. Lett. 29, 1544–1556 (2008)CrossRefGoogle Scholar
  16. 16.
    Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical report #24 (1998)Google Scholar
  17. 17.
    Merkow, J., Jou, B., Savvides, M.: An exploration of gender identification using only the periocular region. In: Proceedings 4th IEEE International Conference Biometrics Theory Application System BTAS, pp. 1–5 (2010)Google Scholar
  18. 18.
    Milczarski, P.: A new method for face identification and determining facial asymmetry. In: Katarzyniak, R. (ed.) Semantic Methods for Knowledge Management and Communication, Studies in Computational Intelligence, vol. 381, pp. 329–340 (2011)Google Scholar
  19. 19.
    Milczarski, P., Kompanets, L., Kurach, D.: An Approach to brain thinker type recognition based on facial asymmetry. In: Rutkowski, L., et al. (eds.) ICAISC 2010, Part I, LNCS 6113, pp. 643–650 (2010)Google Scholar
  20. 20.
    Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)CrossRefGoogle Scholar
  21. 21.
    Muldashev, E.R.: Whom Did We Descend From?. OLMA Press, Moscow (2002). (In Russian)Google Scholar
  22. 22.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  23. 23.
    Shakhnarovich, G., Viola, P.A., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: Proceedings International Conference on Automatic Face and Gesture Recognition (FGR 2002), pp. 14–21. IEEE (2002)Google Scholar
  24. 24.
    Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: a comparison study. In: Proceedings IEEE Workshop on Applications of Computer Vision (WACV 2002), pp. 165–170 (2002)Google Scholar
  25. 25.
    Vapnik, V.N., Kotz, S.: Estimation of Dependences Based on Empirical Data. Springer, New York (2006)Google Scholar
  26. 26.
    Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) 7th International Conference on Computer Analysis of Images and Patterns, CAIP 1997, Kiel, pp. 456–463. Springer, Heidelberg (1997)Google Scholar
  27. 27.
    Yamaguchi, M., Hirukawa, T., Kanazawa, S.: Judgment of gender through facial parts. Perception 42, 1253–1265 (2013)CrossRefGoogle Scholar
  28. 28.
    Milczarski, P., Stawska, Z., Dowdall, S.: Features selection for the most accurate SVM gender classifier based on geometrical features. In: Rutkowski, L., et al. (eds.) ICAISC 2018, LNCS 10842, pp. 191–206 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Physics and Applied InformaticsUniversity of LodzLodzPoland
  2. 2.Department of Visual and Human Centred ComputingDundalk Institute of TechnologyDundalk, Co. LouthIreland

Personalised recommendations