Advertisement

An Algorithm for Computing the True Discrete Fractional Fourier Transform

  • Dorota Majorkowska-MechEmail author
  • Aleksandr Cariow
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)

Abstract

This paper proposes an algorithm for computing the discrete fractional Fourier transform. This algorithm takes advantages of a special structure of the discrete fractional Fourier transformation matrix. This structure allows to reduce the number of arithmetic operations required to calculate the discrete fractional Fourier transform.

Keywords

Discrete fractional transforms Discrete fractional Fourier transform Eigenvalue decomposition 

References

  1. 1.
    Wiener, N.: Hermitian polynomials and Fourier analysis. J. Math. Phys. 8, 70–73 (1929)CrossRefGoogle Scholar
  2. 2.
    Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Appl. Math. 25, 241–265 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ozaktas, H.M., Ankan, O., Kutay, M.A., Bozdagi, G.: Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996).  https://doi.org/10.1109/78.536672CrossRefGoogle Scholar
  4. 4.
    Santhanam, B., McClellan, J.H.: Discrete rotational Fourier transform. IEEE Trans. Signal Process. 44(4), 994–998 (1996).  https://doi.org/10.1109/78.492554CrossRefGoogle Scholar
  5. 5.
    Pei, S.-C., Yeh, M.-H.: Discrete fractional Fourier transform. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 536–539 (1996)Google Scholar
  6. 6.
    Pei, S.-C., Tseng, C.-C., Yeh, M.-H., Shyu, J.-J.: Discrete fractional Hartley and Fourier transforms. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 45(6), 665–675 (1998).  https://doi.org/10.1109/82.686685CrossRefzbMATHGoogle Scholar
  7. 7.
    Pei, S.-C., Yeh, M.-H.: Discrete fractional Hadamard transform. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 3, pp. 179–182 (1999).  https://doi.org/10.1109/ISCAS.1999.778814
  8. 8.
    Pei, S.-C., Yeh, M.-H.: Discrete fractional Hilbert transform. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 47(11), 1307–1311 (2000).  https://doi.org/10.1109/82.885138CrossRefGoogle Scholar
  9. 9.
    Pei, S.-C., Yeh, M.H.: The discrete fractional cosine and sine transforms. IEEE Trans. Signal Process. 49(6), 1198–1207 (2001).  https://doi.org/10.1109/78.923302MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Liu, Z., Zhao, H., Liu, S.: A discrete fractional random transform. Opt. Commun. 255(4–6), 357–365 (2005).  https://doi.org/10.1016/j.optcom.2005.06.031CrossRefGoogle Scholar
  11. 11.
    Yetik, I.Ş., Kutay, M.A., Ozaktas, H.M.: Image representation and compression with the fractional Fourier transform. Opt. Commun. 197, 275–278 (2001).  https://doi.org/10.1016/S0030-4018(01)01462-6CrossRefGoogle Scholar
  12. 12.
    Djurović, I., Stanković, S., Pitas, I.: Digital watermarking in the fractional Fourier transformation domain. J. Netw. Comput. Appl. 24(2), 167–173 (2001).  https://doi.org/10.1006/jnca.2000.0128CrossRefzbMATHGoogle Scholar
  13. 13.
    Hennelly, B., Sheridan, J.T.: Fractional Fourier transform-based image encryption: phase retrieval algorithm. Opt. Commun. 226, 61–80 (2003).  https://doi.org/10.1016/j.optcom.2003.08.030CrossRefGoogle Scholar
  14. 14.
    Jindal, N., Singh, K.: Image and video processing using discrete fractional transforms. Signal Image Video Process. 8(8), 1543–1553 (2014).  https://doi.org/10.1007/s11760-012-0391-4CrossRefGoogle Scholar
  15. 15.
    Tao, R., Liang, G., Zhao, X.: An efficient FPGA-based implementation of fractional Fourier transform algorithm. J. Signal Process. Syst. 60(1), 47–58 (2010).  https://doi.org/10.1007/s11265-009-0401-0CrossRefGoogle Scholar
  16. 16.
    Cariow, A., Majorkowska-Mech, D.: Fast algorithm for discrete fractional Hadamard transform. Numer. Algorithms 68(3), 585–600 (2015).  https://doi.org/10.1007/s11075-014-9862-8MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bultheel, A., Martinez-Sulbaran, H.E.: Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Irfan, M., Zheng, L., Shahzad, H.: Review of computing algorithms for discrete fractional Fourier transform. Res. J. Appl. Sci. Eng. Technol. 6(11), 1911–1919 (2013)Google Scholar
  19. 19.
    Pei, S.-C., Yeh, M.-H.: Improved discrete fractional Fourier transform. Opt. Lett. 22(14), 1047–1049 (1997).  https://doi.org/10.1364/OL.22.001047CrossRefGoogle Scholar
  20. 20.
    Candan, Ç.C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48(5), 1329–1337 (2000).  https://doi.org/10.1109/78.839980MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Majorkowska-Mech, D., Cariow, A.: A low-complexity approach to computation of the discrete fractional Fourier transform. Circuits Syst. Signal Process. 36(10), 4118–4144 (2017).  https://doi.org/10.1007/s00034-017-0503-zCrossRefzbMATHGoogle Scholar
  22. 22.
    Halmos, P.R.: Finite Dimensional Vector Spaces. Princeton University Press, Princeton (1947)Google Scholar
  23. 23.
    McClellan, J.H., Parks, T.W.: Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. 20(1), 66–74 (1972).  https://doi.org/10.1109/TAU.1972.1162342MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology SzczecinSzczecinPoland

Personalised recommendations