Vehicle Passengers Detection for Onboard eCall-Compliant Devices

  • Anna Lupinska-Dubicka
  • Marek TabędzkiEmail author
  • Marcin Adamski
  • Mariusz Rybnik
  • Maciej Szymkowski
  • Miroslaw Omieljanowicz
  • Marek Gruszewski
  • Adam Klimowicz
  • Grzegorz Rubin
  • Lukasz Zienkiewicz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)


The European eSafety initiative aims to improve the safety and efficiency of road transport. The main element of eSafety is the pan European eCall project – an in-vehicle system that informs about road collisions or serious accidents. An on-board compact eCall device which can be installed in used vehicle is being developed, partially with the authors of the paper. The proposed system is independent of built-in car systems, it is able to detect a road accident, indicate the number of occupants inside the vehicle, report their vital functions and send those information to dedicated emergency services via duplex communication channel.

This paper focuses on an important functionality of such a device: vehicle occupants detection and counting. The authors analyze a wide variety of sensors and algorithms that can be used and present results of their experiments based on video feed.



The authors would like to sincerely thank Professor Khalid Saeed for content-related care, inspiration and motivation to work.

This work was supported by grant S/WI/1/2018 and S/WI/2/2018, and S/WI/3/2018 from Bialystok University of Technology and funded with resources for research by the Ministry of Science and Higher Education in Poland.


  1. 1.
    Road Safety: Encouraging results in 2016 call for continued efforts to save lives on EU roads. Accessed 24 Mar 2018
  2. 2.
    eCall: Time saved = lives saved. Accessed 24 Mar 2018
  3. 3.
    European Parliament makes eCall mandatory from 2018. Accessed 24 Mar 2018
  4. 4.
    System sensorowy w pojazdach do rozpoznania stanu po wypadku z transmisja informacji do punktu przyjmowania zgloszen eCall. Accessed 24 Mar 2018
  5. 5.
    Nguyen, D.T., Li, W., Ogunbona, P.O.: Human detection from images and videos: a survey. Pattern Recognit. 51, 148–175 (2016)CrossRefGoogle Scholar
  6. 6.
    Choi, J.W., Yim, D.H., Cho, S.H.: People counting based on an IR-UWB radar sensor. IEEE Sens. J. 17, 5717–5727 (2017)CrossRefGoogle Scholar
  7. 7.
    Zohn, Bc.L.: Detection of persons in a vehicle using IR cameras. Master’s Thesis, Faculty of Transportation Sciences, Czech Technical University in Prague (2016)Google Scholar
  8. 8.
    Bernini, N., Bombini, L., Buzzoni, M., Cerri, P., Grisleri, P.: An embedded system for counting passengers in public transportation vehicles. In: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications Proceedings (2014)Google Scholar
  9. 9.
    Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)Google Scholar
  10. 10.
    Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhihua, Z.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2012)Google Scholar
  12. 12.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: ICPR (2004)Google Scholar
  13. 13.
    Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 27, 773 (2006)Google Scholar
  14. 14.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intel. 17(8), 790–799 (1995)CrossRefGoogle Scholar
  15. 15.
    Bradski, G.: Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. 2(2), 1–15 (1998)Google Scholar
  16. 16.
    Exner, D., Bruns, E., Kurz, D., Grundhöfer, A., Bimber, O.: Fast and robust CAMShift tracking. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, pp. 9–16 (2010)Google Scholar
  17. 17.
    Sooksatra, S., Kondo, T.: CAMShift-based algorithm for multiple object tracking. In: Proceedings of the 9th International Conference on Computing and Information Technology IC2IT 2013, Bangkok, Thailand, pp. 301–310 (2013)Google Scholar
  18. 18.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop (1981)Google Scholar
  19. 19.
    Abdi, H., William, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)CrossRefGoogle Scholar
  20. 20.
    Hyvarinen, A., Karhunen, J., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430 (2000)Google Scholar
  21. 21.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13, pp. 556–562 (2001)Google Scholar
  22. 22.
    Rabiner, L.R.: A tutorial o hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989)CrossRefGoogle Scholar
  23. 23.
    Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Signal Process. 7(3–4), 197–387 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ramírez, J., Górriz, J.M., Segura, J.C.: Voice activity detection, fundamentals and speech recognition system robustness. In: Robust Speech Recognition and Understanding, pp. 1–22 (2007)Google Scholar
  25. 25.
    Lupinska-Dubicka, A., Tabedzki, M., Adamski, M., Rybnik, M., Omieljanowicz, M., Omieljanowicz, A., Szymkowski, M., Gruszewski, M., Klimowicz, A., Rubin, G., Saeed, K.: The concept of in-vehicle system for human presence and their vital signs detection. In: 5th International Doctoral Symposium on Applied Computation and Security Systems: ACSS2018 (2018)Google Scholar
  26. 26.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)Google Scholar
  27. 27.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)Google Scholar
  28. 28.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)Google Scholar
  29. 29.
  30. 30.
  31. 31.
    Abercrombie, L.: Short poetry collection 091. Accessed 30 Apr 2018
  32. 32.
    Soundjay. Accessed 30 Apr 2018
  33. 33.
    Soundbible. Accessed 30 Apr 2018
  34. 34.
  35. 35.
    Eurostat - Passenger cars in the EU. Accessed 24 Mar 2018
  36. 36.
    Bellucci, P., Cipriani, E.: Data accuracy on automatic traffic counting the smart project results. Eur. Transp. Res. Rev. 2(4), 175–187 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anna Lupinska-Dubicka
    • 1
  • Marek Tabędzki
    • 1
    Email author
  • Marcin Adamski
    • 1
  • Mariusz Rybnik
    • 2
  • Maciej Szymkowski
    • 1
  • Miroslaw Omieljanowicz
    • 1
  • Marek Gruszewski
    • 1
  • Adam Klimowicz
    • 1
  • Grzegorz Rubin
    • 3
  • Lukasz Zienkiewicz
    • 1
  1. 1.Faculty of Computer ScienceBialystok University of TechnologyBialystokPoland
  2. 2.Faculty of Mathematics and InformaticsUniversity of BialystokBialystokPoland
  3. 3.Faculty of Computer and Food ScienceLomza State University of Applied SciencesLomzaPoland

Personalised recommendations