Advertisement

Business Process Modelling with “Cognitive” EPC Diagram

  • Olga Pilipczuk
  • Galina Cariowa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)

Abstract

This paper presents the conception of Cognitive Event Driven Chain Diagram (cEPC) based on integration of traditional EPC diagram and fuzzy cognitive maps. At the beginning the stages of evolution of business process modelling (BPM) tools are presented. The pyramid of business process classification in terms of cognitive BPM is discussed. The paper also describes the business process cognitive intensity evaluation method. An example of cEPC diagram of skin cancer diagnosis process is provided as well.

Keywords

Business process Event-Driven Chain Diagram Fuzzy cognitive map ARIS methodology 

References

  1. 1.
    Harmon, P.: BP Trends report. The State of Business Process Management 2016 (2016). www.bptrends.com
  2. 2.
  3. 3.
    Dunie, R.: Magic Quadrant for Intelligent Business Process Management Suites, Gartner (2015)Google Scholar
  4. 4.
    Hull, R., Nezhad, H.: Preprint from Proceedings of International Conference on Business Process Management, Rethinking BPM in a Cognitive World: Transforming How We Learn and Perform Business Processes, Business Process Management 14th International Conference, BPM 2016 Proceedings, Rio de Janeiro, Brazil, 18–22 September, pp. 3–19 (2016)Google Scholar
  5. 5.
    Marjanovic, O., Freeze, R.: Knowledge intensive business processes: theoretical foundations and research challenges. In: 44th Hawaii International Conference on System Sciences (HICSS) (2011).  https://doi.org/10.1109/hicss.2011.271
  6. 6.
    Sarnikar, S., Deokar, A.: Knowledge management systems for knowledge-intensive processes: design approach and an illustrative example. In: Proceedings of the 43rd Hawaii International Conference on System Sciences (2010)Google Scholar
  7. 7.
    Rychkova, I., Nurcan, S.: Towards adaptability and control for knowledge-intensive business processes: declarative configurable process specifications. In: Proceedings of the 44th Hawaii International Conference on System Sciences (2011)Google Scholar
  8. 8.
  9. 9.
    Wang, Y., Wang, Y.: Cognitive informatics models of the brain. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 36(2), 203–207 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, Y.: Software Engineering Foundations: A Software Science Perspective. Auerbach Publications, Boston (2007a)Google Scholar
  11. 11.
    Wang, Y.: The theoretical framework of cognitive informatics. Int. J. Cogn. Inform. Nat. Intell. (IJCINI), 1(1), 1–27 (2007b)Google Scholar
  12. 12.
    Wang, Y., Gafurov, D.: The cognitive process of comprehension. In: Proceedings of the 2nd IEEE International Conference on Cognitive Informatics (ICCI 2003), London, UK, pp. 93–97 (2003a)Google Scholar
  13. 13.
    Wang, Y., Wang, Y., Patel, S., Patel, D.: A layered reference model of the brain (LRMB). IEEE Trans. Syst. Man Cybern. 36(2), 124–133 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, Y.: On cognitive informatics. Brain Mind Transdisc. J. Neurosci. Neurophilos. 42, 151–167 (2003)Google Scholar
  15. 15.
    Kool, W., McGuire, J., Rosen, Z., Botvinick, M.: Decision making and the avoidance of cognitive demand. J. Exp. Psychol. Gen. 139, 665–682 (2010)CrossRefGoogle Scholar
  16. 16.
    McGuire, J., Botvinick, M.: Prefrontal cortex, cognitive control, and the registration of decision costs. Proc. Natl. Acad. Sci. 107, 7922 (2010)CrossRefGoogle Scholar
  17. 17.
    Westbrook, A., Kester, D., Braver, T.: What is the subjective cost of cognitive effort? load, trait, and aging effects revealed by economic preference. PLoS ONE 8(7), e68210 (2013)CrossRefGoogle Scholar
  18. 18.
    Dreisbach, G., Fischer, R.: Conflicts as aversive signals: motivation for control adaptation in the service of affect regulation. In: Braver, T.S. (ed.) Motivation and Cognitive Control. Psychology Press, New York (2012)Google Scholar
  19. 19.
    Kahneman, D.: Maps of bounded rationality: A perspective on intuitive judgment and choice, Les Prix Nobel 2002, Almquist & Wiksell International, Sztokholm, Sweden (2003)Google Scholar
  20. 20.
    Elkins-Brown, N., Saunders, B., Inzlicht, M.: Error-related electromyographic activity over the corrugator supercilii is associated with neural performance monitoring. Psychophysiology 53, 159–170 (2015)CrossRefGoogle Scholar
  21. 21.
    Cavanagh, J., Masters, S., Bath, K., Frank, M.: Conflict acts as an implicit cost in reinforcement learning. Nat. Commun. 5, 5394 (2014)CrossRefGoogle Scholar
  22. 22.
    Cavanagh, J., Frank, M.: Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014)CrossRefGoogle Scholar
  23. 23.
    Spunt, R., Lieberman, M., Cohen, J., Eisenberger, N.: The phenomenology of error processing: the dorsal anterior cingulate response to stop-signal errors tracks reports of negative affect. J. Cogn. Neurosci. 24, 1753–1765 (2012)CrossRefGoogle Scholar
  24. 24.
    Blain, B., Hollard, G., Pessiglione, M.: Neural mechanisms underlying the impact of daylong cognitive work on economic decisions. PNAS 113, 6967–6972 (2016)CrossRefGoogle Scholar
  25. 25.
    Westbrook, A., Kester, D., Braver, T.: What is the subjective cost of cognitive effort? load, trait, and aging effects revealed by economic preference. PLoS ONE 8, e68210 (2013)CrossRefGoogle Scholar
  26. 26.
    Schneider, W., McGrew, K.: The Cattell-Horn-Carroll model of intelligence. In: Flanagan, D., Harrison, P. (eds.) Contemporary Intellectual Assessment: Theories, Tests, and Issues (3rd ed.), pp. 99–144. Guilford, New York (2012)Google Scholar
  27. 27.
    Pilipczuk, O., Cariowa, G.: Opinion acquisition an experiment on numeric, linguistic and color coded rating scale comparison. In: Kobayashi, S., Piegat, A., Pejaś, J., El Fray, I., Kacprzyk, J. (eds.) Hard and Soft Computing for Artificial Intelligence, Multimedia and Security, Advances in Intelligent Systems and Computing, vol. 534, pp. 27–36. Springer, Cham (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of SzczecinSzczecinPoland
  2. 2.West Pomieranian University of SzczecinSzczecinPoland

Personalised recommendations