The Approach to Users Tasks Simplification on Engineering Knowledge Portals

  • Larysa GlobaEmail author
  • Rina Novogrudska
  • O. Koval
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)


The paper the approach to computer-aided workflow designing for engineering tasks (engineering web-services) on knowledge portals that can be used to increase the efficiency of engineering tasks performance. The method of engineering tasks simplification is proposed that allows to form the minimized set of engineering tasks elements used for such tasks execution. Specific algebraic system of engineering tasks is described that form the basis for method of engineering tasks simplification. Algebraic system involves formal contextually independent structures for engineering tasks elements representation. The example of the approach usage for real engineering tasks is depicted, the quantitative evaluation of the efficiency increasing for engineering tasks of “Strength of materials” problem domain is given.


Engineering tasks Computer-aided workflow designing Algebraic system Web services execution 


  1. 1.
    Pukhkaiev, D., Kot, T., Globa, L., Schill, A.: A novel SLA-aware approach for web service composition. In: IEEE EUROCON, pp. 327–334 (2013)Google Scholar
  2. 2.
    Moghaddam, M., Davis, J.G.: Service selection in web service composition: a comparative review of existing approaches. Web Services Foundations, pp. 321–346. Springer, New York (2014)CrossRefGoogle Scholar
  3. 3.
    Shehu, U., Epiphaniou, G., Safdar, G.A.: A survey of QoS-aware web service composition techniques. Int. J. Comput. Appl. (2014)Google Scholar
  4. 4.
    Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N.: Bringing semantics to web services: the OWL-S approach. In: Semantic Web Services and Web Process Composition, pp. 26–42. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Moghaddam, M., Davis, J.G.: Service selection in web service composition: a comparative review of existing approaches. In: Web Services Foundations, pp. 321–346. Springer, New York (2014)Google Scholar
  6. 6.
    Kolb, D.G.: Web-oriented realization of semantic models for intellectual systems. In: Proceedings of scientific conference “Open Semantic Technologies for Intelligent Systems (OSTIS-2012)”, 111–122 pp., Minsk (2012)Google Scholar
  7. 7.
    Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services selection. IEEE Internet Comput. 8, 84–93 (2004)Google Scholar
  8. 8.
    Ngan, L.D., Kanagasabai, R.: Semantic Web service discovery: state-of-the-art and research challenges. Pers. Ubiquitous Comput. 17(8), 1741–1752 (2013)Google Scholar
  9. 9.
    Hatzi, O., Vrakas, D., Bassiliades, N., Anagnostopoulos, D., Vlahavas, I.: The PORSCE II framework: using AI planning for automated semantic web service composition. Knowl. Eng. Rev. 28, 137 (2011)Google Scholar
  10. 10.
    Koval, A., Globa, L., Novogrudska, R.: The approach to web services composition. In: Hard and Soft Computing for Artificial Intelligence, Multimedia and Security. Advances in Intelligent Systems and Computing, vol. 534, pp. 293–304. Springer (2017)Google Scholar
  11. 11.
    Barwise, J.: Handbook of Mathematical Logic. North Holland, Studies in Logic and the Foundations of Mathematics (1989)zbMATHGoogle Scholar
  12. 12.
    Burris, S.N., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York (1981)CrossRefGoogle Scholar
  13. 13.
    Glushkov, V.M., Ceitlin, E.L., Yushenko, E.L.: Algebra. Languages. Programing, 376 p. Naukova Dumka, Kyiv (1989)Google Scholar
  14. 14.
    Shahovska, N.B.: Data space in sphere of scientific research. In: Modeling and Information Technologies, vol. 45, pp. 132–140 (2008)Google Scholar
  15. 15.
    Rosen, K.H.: Discrete Mathematics: And Its Applications. McGraw-Hill College (2007). ISBN 978-0-07-288008-3Google Scholar
  16. 16.
    Dwyer, J.: An Introduction to Discrete Mathematics for Business & Computing (2010). ISBN 978-1-907934-00-1Google Scholar
  17. 17.
    Telenik, S.F.: Logic of computation processes representation in the intellectual system SmartBase. In: System Technologies. System Modeling of Technological Processes, pp. 131–139, Kyiv (1999)Google Scholar
  18. 18.
    Globa, L.S., Novogrudska, R.L.: An approach to formal system for knowledge portals development. Ontol. Des. 2(11), 40–59 (2014) ISSN 2223-9537Google Scholar
  19. 19.
    Norms for the strength calculation for the power components of magnetic systems, 73 p. ISP, Kyiv (1984)Google Scholar
  20. 20.
    Norms for the strength calculation for equipment and pipelines of nuclear power systems. Energoatomizdat, 525 p. (1989)Google Scholar
  21. 21.
    Bansal, S., Bansal, A., Gupta, G., Blake, M.B.: Generalized semantic web service composition. Serv. Oriented Comput. Appl. 10(2), 111–133 (2016)CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Mier, P., Pedrinaci, C., Lama, M., Mucientes, M.: An integrated semantic web service discovery and composition framework. IEEE Trans. Serv. Comput. 9(4), 537–550 (2016). ISSN 1939-1374
  23. 23.
    Petrie, C.J.: Web Service Composition. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  24. 24.
    da Silva, A., Ma, H., Zhang, M.: GraphEvol: a graph evolution technique for web service composition. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 134–142. Springer, Heidelberg (2015).
  25. 25.
    Wang, C., Ma, H., Chen, A., Hartmann, S.: Comprehensive quality-aware automated semantic web service composition. In: Peng, W., Alahakoon, D., Li, X. (eds.) AI 2017: Advances in Artificial Intelligence, AI 2017. LNCS, vol. 10400. Springer, Cham (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations