Advertisement

Design of the BLINDS System for Processing and Analysis of Big Data - A Pre-processing Data Analysis Module

  • Janusz BobulskiEmail author
  • Mariusz Kubanek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)

Abstract

Big Data is one of the most important challenges of the modern digital world. The possibilities of processing large amounts of data of various types and complexity, coming from various information sources, are used in many areas. The use of Big Data systems will take place in practical areas of all life. The article proposed the system BLINDS, its characteristics and assumptions of the data pre-processing module.

Keywords

Big data Intelligent systems Data pre-processing Multi-data processing 

References

  1. 1.
    Buhl, H., Röglinger, M., Moser, F., Heidemann, J.: Big data. Bus. Inf. Syst. Eng. 5(2), 65–69 (2013)Google Scholar
  2. 2.
    Zikopoulos, P., Eaton, C., deRoos, D., Deutsch, T., Lapis, G.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw Hill, New York (2012)Google Scholar
  3. 3.
    Doug, L.: Data Management: Controlling Data Volume, Velocity, and Variety, Application Delivery Strategies. META Group, Gartner, Stamford (2011)Google Scholar
  4. 4.
    Chang, C., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information extraction systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)CrossRefGoogle Scholar
  5. 5.
    Jinchuan, C., Yueguo, C., Xiaoyong, D., Cuiping, L., Jiaheng, L., Suyun, Z., Xuan, Z.: Big data challenge: a data management perspective. Front. Comput. Sci. 7(2), 157–164 (2013). SP Higher Education PressMathSciNetCrossRefGoogle Scholar
  6. 6.
    Katal, A., Wazid, M., Goudar, R.H.: Big data: issues, challenges, tools and good practices. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 404–409. IEEE, Noida (2013)Google Scholar
  7. 7.
    Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering The Information Age – Solving Problems with Visual Analytics. Eurographics Association, Goslar (2010)Google Scholar
  8. 8.
    Labrinidis, A., Jagadish, H.: Challenges and opportunities with big data. Proc. VLDB Endow. 5(12), 2032–2033 (2012)CrossRefGoogle Scholar
  9. 9.
    Tabakow, M., Korczak, J., Franczyk, B.: Big data–definition, challenges and information technologies. Bus. Inform. 1(31), 138–153 (2014)Google Scholar
  10. 10.
    Maslankowski, J.: Analysis of the quality of data obtained from websites using Big Data solutions. Ann. Collegium Econ. Anal. 38, 167–177, (2015)Google Scholar
  11. 11.
    Marz N., Warren J.: Big Data Principles and Best Practices. Manning Publications Co., Greenwich (2015)Google Scholar
  12. 12.
    Zadeh, L.A.: Computing with Words: Principal Concepts and Ideas. Springer Publishing Company Incorporated, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Schank, R.C.: Conceptual Information Processing. Yale University, New Haven (1975)zbMATHGoogle Scholar
  14. 14.
    BBC: Connecting with people in six steps. http://news.bbc.co.uk/2/hi/programmes/more_or_less/5176698.stm
  15. 15.
    Bobulski, J.: Multimodal face recognition method with two-dimensional hidden Markov model. Bull. Pol. Acad. Sci. Tech. Sci. 65(1), 121–128 (2017)Google Scholar
  16. 16.
    Kubanek, M., Bobulski, J., Adrjanowicz, L.: Characteristics of the use of coupled hidden Markov models for audio-visual Polish speech recognition. Bull. Pol. Acad. Sci. Tech. Sci. 60(2), 307–316 (2012)Google Scholar
  17. 17.
    Bobulski,, J.: Parallel facial recognition system based on 2DHMM. In: Advances in Intelligent Systems and Computing, vol. 534, pp. 258–265. Springer (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computer and Information ScienceCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations