What to Do with Unwanted Catches: Valorisation Options and Selection Strategies

  • Bruno IñarraEmail author
  • Carlos Bald
  • Marta Cebrián
  • Luis T. Antelo
  • Amaya Franco-Uría
  • José Antonio Vázquez
  • Ricardo I. Pérez-Martín
  • Jaime Zufía


The European Common Fisheries Policy (CFP) has established a landing obligation (LO) and the need for proper management of bycatches without incentivising their capture. Food use is the priority option but only unwanted catches (UWC) above minimum conservation reference size (MCRS) can be used for direct human consumption. As a result, other options, such as animal feeds, industrial uses or energy, should be considered to valorise landed < MCRS individuals. Two approaches have been developed to help select the best available option for processing UWC. The first methodology is based on a multi-criteria decision analysis (MCDA) using an analytic hierarchy process (AHP) that considers technical, economic and market criteria. As a sample case, we chose the Basque fleet fishing in the Bay of Biscay, developed within the H2020 DiscardLess project. The second approach is based on the simultaneous analysis of both economic and environmental aspects. This was applied to the case of Spanish bottom trawlers operating in ICES sub-Divisions VIIIc and IXa. Finally, various food products and bio compounds from typical UWC biomass were obtained in a pilot food processing plant developed within the LIFE iSEAS project.


ε-constraint approach Analytic hierarchy process Biomolecules Biorefinery Bycatches Discards management In-land management Landing obligation Multi-criteria decision analysis Unwanted catches Valorisation 



DiscardLess project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under grant agreement no. 633680. Life iSEAS has been co-funded under the LIFE+Environment Program of the European Union (LIFE13 ENV/ES/000131).


  1. Antelo, L.T., De Hijas-Liste, G.M., Franco-Uría, A., Alonso, A.A., Pérez-Martín, R.I. (2015). Optimisation of processing routes for a marine biorefinery. Journal of Cleaner Production, 104, 489–501. Scholar
  2. Bernardi, A., Giarola, S., Bezzo, F. (2013). Spatially explicit multiobjective optimization for the strategic design of first and second generation biorefineries including carbon and water footprints. Industrial and Engineering Chemistry Research, 52(22), 7170–80. Scholar
  3. Blanco, M., Fraguas, J., Sotelo, C.G., Pérez-Martín, R.I., Vázquez, J.A. (2015). Production of chondroitin sulphate from head, skeleton and fins of Scyliorhinus canicula by-products by combination of enzymatic, chemical precipitation and ultrafiltration methodologies. Marine Drugs, 13, 3287–3308.CrossRefGoogle Scholar
  4. Blanco, M., Vázquez, J.A., Sotelo, C.G., Pérez-Martín, R.I. (2017). Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry byproducts. Marine Drugs, 15, 131.CrossRefGoogle Scholar
  5. Blanco, M., Domínguez-Timón, F., Pérez-Martín, R.I., Fraguas, J., Ramos-Ariza, P., Vázquez, J.A., Borderías, A.J., Moreno, H.M. (2018). Under evaluation. Valorization of recurrently discarded fish species in trawler fisheries in North-West Spain. Journal of Food Science and Technology.Google Scholar
  6. Egea, J.A., Henriques D., Cokelaer, T., Villaverde, A.F., MacNamara, A., Danciu, D.P, Banga, J.R., Saez-Rodriguez, J. (2014). MEIGO: An open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinformatics, 15(1), 136. Scholar
  7. European Parliament Council, 2008/98/EC of The European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. 2008. Brussels.Google Scholar
  8. FAO. (2017). FAO yearbook. Fishery and Aquaculture Statistics. 2015/FAO annuaire. Statistiques des pêches et de l’aquaculture. 2015/FAO anuario. Estadísticas de pesca y acuicultura. 2015. Rome/Roma, Italy/Italie/Italia.Google Scholar
  9. Ferreira, V.R.A., Azenha, M.A., Mêna, M.T., Moura, C., Pereira, C.M., Pérez-Martín, R.I., Vázquez, J.A., Silva, A.F. (2018). Cationic imprinting of Pb (II) within composite networks based on bovine or fish chondroitin sulfate. Journal of Molecular Recognition, 31(3), e2614.CrossRefGoogle Scholar
  10. Froese, R., & Pauly, D. (Eds.). (2018). FishBase., version (02/2018).
  11. Iñarra, B., Bald, C., Cebrián, M., Pérez-Villareal, B., Zufía, J. (2018) Guide for the selection of valorisation options of by-catches. Derio: AZTI. ISBN: 978-84-944022-4-1Google Scholar
  12. Martinez-Hernandez, E., Campbell, G., Sadhukhan, J. (2013). “Economic value and environmental impact (EVEI) analysis of biorefinery systems.” Chemical Engineering Research and Design, 91(8), 1418–26. Scholar
  13. Murado, M.A., Fraguas, J., Montemayor, M.I., Vázquez, J.A., González, P. (2010). Preparation of highly purified chondroitin sulphate from skate (Raja clavata) cartilage by-products. Process optimization including a new procedure of alkaline hydroalcoholic hydrolysis. Biochemical Engineering Journal, 49, 126–132.CrossRefGoogle Scholar
  14. Murado, M.A., Montemayor, M.I., Cabo, M.L., Vázquez, J.A., González, M.P. (2012). Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food and Bioproducts Processing, 90, 491–498.CrossRefGoogle Scholar
  15. Murillo-Alvarado, P.E., Ponce-Ortega, J.M., Serna-González, M., Castro-Montoya, A.J., El-Halwagi, M.M. (2013). Optimization of pathways for biorefineries involving the selection of feedstocks, products, and processing steps. Industrial and Engineering Chemistry Research, 52(14), 5177–90. Scholar
  16. Novoa-Carballal, R., Pérez-Martín, R., Blanco, M., Sotelo, C.G., Fassini, D., Nunes, C., Coimbra, M.A., Silva, T.H., Reis, R.L., Vázquez, J.A. (2017). By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulphated chondroitin sulphate. Carbohydrate Polymers, 157, 31–37.CrossRefGoogle Scholar
  17. O’Neil, F.G., Feekings, J., Fryer, R.J., Fauconnet, L., Afonso, P. (this volume). Discard avoidance by improving fishing gear selectivity: Helping the industry help themselves. In S.S. Uhlmann, C. Ulrich, S.J. Kennelly (Eds.), The European discard policy – Reducing unwanted catches in complex multi-species and multi-jurisdictional fisheries. Cham: Springer.Google Scholar
  18. Prellezo, R., Carmona, I. García, D. (2016). The bad, the good and the very good of the landing obligation implementation in the Bay of Biscay: A case study of Basque trawlers. Fisheries Research, 181, 172–185.CrossRefGoogle Scholar
  19. Reid, D.G., Calderwood, J., Afonso, P., Bourdeau, P., Fauconnet, L., et al. (this volume). The best way to reduce discards is by not catching them! In S.S. Uhlmann, C. Ulrich, S.J. Kennelly (Eds.), The European discard policy – Reducing un-wanted catches in complex multi-species and multi-jurisdictional fisheries. Cham: Springer.Google Scholar
  20. San Martin, D., Orive, M., Martínez, E., Iñarra, B., Ramos, S., González, N., Guinea de Salas, A., Vázquez, L., Zufía, J. (2017). Decision making supporting tool combining AHP method with GIS for implementing food waste valorisation strategies. Waste and Biomass Valoriztion, 8, 1555–1567.CrossRefGoogle Scholar
  21. Santibañez-Aguilar, J.E., González-Campos, J.B., Ponce-Ortega, J.M., Serna-González, M., El-Halwagi, M.M. 2014. Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. Journal of Cleaner Production, 65(15), 270–294.CrossRefGoogle Scholar
  22. Sousa, S.C., Vázquez, J.A., Pérez-Martín, R.I., Carvalho, A.P., Gomes, A.M. (2017). Valorization of by-products from commercial fish species: Extraction and chemical properties of skin gelatins. Molecules, 22, 1545.CrossRefGoogle Scholar
  23. Valcarcel, J., Novoa-Carballal, R., Pérez-Martín, R.I., Reis, R.L., Vázquez, J.A. (2017). Glycosaminoglycans from marine sources as therapeutic agents. Biotechnology Advances, 35, 711–725.CrossRefGoogle Scholar
  24. Vázquez, J.A., Montemayor, M.I., Fraguas, J., Murado, M.A. (2010). Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microbial Cell Factories, 9(1), 46.CrossRefGoogle Scholar
  25. Vázquez, J.A., Blanco, M., Fraguas, J., Pastrana, L., Pérez-Martín, R.I. (2016). Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chemistry, 198, 28–35.CrossRefGoogle Scholar
  26. Vázquez, J.A., Ramos, P., Mirón, J., Valcarcel, J., Sotelo, C.G., Pérez-Martín, R.I. (2017a). Production of chitin from Penaeus vannamei by-products to pilot plant scale using a combination of enzymatic and chemical processes and subsequent optimization of the chemical production of chitosan by response surface methodology. Marine Drugs, 15, 180.CrossRefGoogle Scholar
  27. Vázquez, J.A., Noriega, D., Ramos, P., Valcarcel, J., Novoa-Carballal, R., Pastrana, L., Reis, R.L., Pérez-Martín, R.I. (2017b). Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydrate Polymers, 174, 262–272.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Bruno Iñarra
    • 1
    Email author
  • Carlos Bald
    • 1
  • Marta Cebrián
    • 1
  • Luis T. Antelo
    • 2
  • Amaya Franco-Uría
    • 3
  • José Antonio Vázquez
    • 2
  • Ricardo I. Pérez-Martín
    • 2
  • Jaime Zufía
    • 1
  1. 1.AZTI, Efficient and Sustainable Processes area, Parque Tecnológico de BizkaiaDerioSpain
  2. 2.Marine Research Institute IIM-CSICVigoSpain
  3. 3.Department of Chemical Engineering, School of EngineeringUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations