The Role of Palynology in Forensic Archaeology

  • Vaughn M. BryantEmail author
  • Mary K. Bryant


This chapter addresses the importance, techniques, applications, and advantages of using pollen trace evidence as part of forensic palynology, within the context of archaeology. Topics covered include the origins of forensic palynology, the evolution and expansion of that discipline, and the current methods used in criminal and civil investigations. Also addressed is a comprehensive review of the methods palynologists employ in the context of forensics. The strengths and limitations of each method are reviewed as well as its potential use in the future. Some significant criminal cases that have been aided by forensic palynology are discussed along with the needed protocol regarding the collection, transport, storage, processing, and analysis of pollen as trace evidence. The chapter closes with a look toward the future of forensic palynology utilizing new methodologies such as DNA isotope analyses, to gain added accuracy in the interpretation of samples and to increase the reliability and repeatability of pollen analysis.


Forensic archaeology Forensic palynology Pollen trace pollen evidence Palynomorphs Collection techniques Extraction Pollen degradation 


  1. Adams, D. P., & Mehringer, P. J. (1975). Modern pollen surface samples: An analysis of subsamples. Journal of Research of the U.S. Geological Survey, 3, 733–736.Google Scholar
  2. Agashe, S. N., & Caulton, E. (2009). Forensic palynology, Chapter 20. In S. N. Agashe & E. Caulton (Eds.), Pollen and spores: Applications with special emphasis on aerobiology and allergy (pp. 337–345). Boca Raton: CRC Press.CrossRefGoogle Scholar
  3. Aziz, A. N., & Sauve, R. J. (2008). Genetic mapping of Echinacea purpurea via individual pollen DNA fingerprinting. Molecular Breeding, 21, 227–232.CrossRefGoogle Scholar
  4. Bell, K. L., Burgess, K. S., Okamoto, K. C., Aranda, R., & Brosi, B. J. (2016). Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Science International: Genetics, 21, 110–116.CrossRefGoogle Scholar
  5. Bell, B. A., Fletcher, W. J., Ryan, P., Grant, H., & Ilmen, R. (2017a). Stable carbon isotope analysis of Cedrus atlantica pollen as an indicator of moisture availability. Review of Palaeobotany and Palynology, 244, 128–139.CrossRefGoogle Scholar
  6. Bell, K. L., Loeffler, V. M., & Brosi, B. J. (2017b). An rbcL reference library to aid in the identification of plant species mixtures by DNA Metabarcoding. Applications in Plant Sciences, 5(3), 1–7.CrossRefGoogle Scholar
  7. Bock, J. H., & Norris, D. O. (1997). Forensic botany: An under-utilised resource. Journal of Forensic Sciences, 42, 364–367.CrossRefGoogle Scholar
  8. Brown, A. G. (2006). The use of forensic botany and geology in war crimes investigations in NE Bosnia. Forensic Science International, 163, 204–210.CrossRefGoogle Scholar
  9. Brown, C. (2008). Palynological techniques (2nd ed.). Dallas: AASP Foundation.Google Scholar
  10. Bruce, R. G., & Dettmann, M. E. (1996). Palynological analyses of Australian surface soils and their potential in forensic science. Forensic Science International, 81, 77–94.CrossRefGoogle Scholar
  11. Bryant, V. M. (1977). A 16,000 year pollen record of vegetational change in Central Texas. Palynology, 1, 143–156.CrossRefGoogle Scholar
  12. Bryant, V. M. (1989). Pollen: Nature’s fingerprints of plants. In 1990 yearbook of science and the future (pp. 92–111). Chicago: Encyclopaedia Britannica.Google Scholar
  13. Bryant, V. M. (2000). Does pollen prove the shroud authentic? Biblical Archaeology Review, 26, 36–45.Google Scholar
  14. Bryant, V. M. (2013). Analytical techniques in forensic palynology. In S. A. Elias & C. J. Mock (Eds.), Encyclopedia of quaternary science (Vol. 4, 2nd ed., pp. 556–566). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Bryant, V. M. (2014). Pollen and spore evidence in forensics. In A. Jamieson & A. A. Moenssens (Eds.), Wiley encyclopedia of forensic science (2nd ed., pp. 1–16). Chichester: Wiley.Google Scholar
  16. Bryant, V. M. (2016). Pollen as trace evidence in Forensics. The Texas Investigator (fall):1–5.Google Scholar
  17. Bryant, V. M., & Jones, J. G. (2006). Forensic palynology: Current status of a rarely used technique in the United States of America. Forensic Science International, 163, 183–197.CrossRefGoogle Scholar
  18. Bryant, V. M., Jr., & Hall, S. A. (1993). Archaeological palynology in the United States: A critique. American Antiquity, 58, 277–286.CrossRefGoogle Scholar
  19. Bryant, V. M., & Schoenwetter, J. (1987). Pollen records from Lubbock Lake. In E. Johnson (Ed.), Lubbock Lake Late Quaternary studies on the Southern High Plains of Texas (pp. 36–40). College Station: Texas A & M University Press.Google Scholar
  20. Bryant, V. M., Jones, J. G., & Mildenhall, D. C. (1996). Forensic studies in palynology. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications, American Association of Stratigraphic Palynologists Foundation (3) (pp. 957–959). Dallas: AASP.Google Scholar
  21. Bull, P. A., Morgan, R. M., Sagovsky, A., & Hughes, G. J. A. (2006). The transfer and persistence of trace particulates: Experimental studies using clothing fabrics. Science and Justice, 46(3), 185–195.CrossRefGoogle Scholar
  22. Campbell, I., & Campbell, C. (1994). Pollen preservation: Experimental wet-dry cycles in saline and desalinated sediments. Palynology, 18, 5–10.CrossRefGoogle Scholar
  23. Connor, M. A. (2007). Forensic methods: Excavation for the archaeologist and investigator. New York: Rowman & Littlefield Pub.Google Scholar
  24. Erdtman, G. (1969). Handbook of palynology. An introduction to the study of pollen grains and spores. New York: Hafner Publishing 486 p.Google Scholar
  25. Eyring, M. B. (1996). Soil pollen analysis from a forensic point of view. Microscope, 44, 81–97.Google Scholar
  26. Faegri, K., Kaland, P. E., & Krzywinski, K. (Eds.). (1989). Textbook of pollen analysis (4th ed.). Chichester: Wiley.Google Scholar
  27. Frei, M. (1982). Nine years of palinological studies on the shroud. Shroud Spectrum International, 3, 3–7.Google Scholar
  28. Gottardina, E., Rossi, S., Cristofolini, F., & Benedetti, L. (2007). Use of Fourier transform infrared (FT-IR) spectroscopy as a tool for pollen identification. Aerobiologia, 23, 211–219.CrossRefGoogle Scholar
  29. Hall, S. A. (1981). Deteriorated pollen grains and the interpretation of quaternary pollen diagrams. Review of Paleobotany and Palynology, 32, 193–206.CrossRefGoogle Scholar
  30. Havinga, A. J. (1964). Investigations into the differential corrosion susceptibility of pollen and spores. Pollen et Spores, 6, 621–635.Google Scholar
  31. Havinga, A. J. (1984). A 20-year experimental investigation into the differential corrosion susceptibility of pollen and spores in various soil types. Pollen et Spores, 26, 541–558.Google Scholar
  32. Holloway, R. G. (1989). Experimental mechanical pollen degradation and its application to quaternary age deposits. The Texas Journal of Science, 41(2), 131–145.Google Scholar
  33. Horowitz, A. (1975). Palynology of arid lands. Amsterdam: Elsevier.Google Scholar
  34. Horrocks, M. (2004). Sub-sampling and preparing forensic samples for pollen analysis. Journal of Forensic Sciences, 49, 1–4.CrossRefGoogle Scholar
  35. Horrocks, M., & Walsh, K. A. J. (1999). Fine resolution of pollen patterns in limited space: Differentiating a crime scene and alibi scene seven metres apart. Journal of Forensic Sciences, 44, 417–420.Google Scholar
  36. Horrocks, M., Coulson, S. A., & Walsh, K. A. J. (1998). Forensic palynology: Variation in the pollen content of soil surface samples. Journal of Forensic Sciences, 43, 320–323.CrossRefGoogle Scholar
  37. Horrocks, M., Coulson, S. A., & Walsh, K. A. J. (1999). Forensic palynology: Variation in the pollen content of soil on shoes and in shoeprints in soil. Journal of Forensic Sciences, 44, 119–122.Google Scholar
  38. Hugg, T., Valtonen, A., & Rantio-Lehtimaki, A. (2007). Pollen concentrations inside private cars during the Poaceae and Artemisia spp. pollen season – a case study. Grana, 46, 110–117.CrossRefGoogle Scholar
  39. Hunt, C. O., Rushworth, G., & Dykes, A. P. (2007). UV-fluorescence microscopy and the coherence of pollen assemblages in environmental archaeology and quaternary geology. Journal of Archaeological Science, 34, 562–571.CrossRefGoogle Scholar
  40. Hunter, J., & Cox, M. (2005). Forensic archaeology: Advances in theory and practice. London: Routledge.Google Scholar
  41. Ivleva, N., Niessner, R., & Panne, U. (2005). Characterization and discrimination of pollen by Raman microscopy. Annuals of Bioanalytical Chemistry, 381, 261–267.CrossRefGoogle Scholar
  42. Jackson, S. T., & Lyford, M. E. (1999). Pollen dispersal models in quaternary plant ecology: Assumptions, parameters, and prescriptions. The Botanical Review, 65(1), 39–75.CrossRefGoogle Scholar
  43. Jones, J. G., & Bryant, V. M. (2007). A comparison of pollen counts: Light versus scanning electron microscopy. Grana, 46, 20–33.CrossRefGoogle Scholar
  44. King, J. (n.d.). Unpublished information about pollen used to apprehend a murderer in Illinois during the 1990s.Google Scholar
  45. Kraaijeveld, K., De Weger, L. A., Garcia, M. V., Buermans, H., Frank, J., Hiemstra, P. S., & Den Dunnen, J. T. (2015). Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Molecular Ecology Resources (2015), 15, 8–16.CrossRefGoogle Scholar
  46. Laurence, A., & Bryant, V. M. (2013). Forensic palynology. In J. Albanese (Ed.), The encyclopedia of criminology and criminal justice (pp. 1741–1754). Chichester: Wiley-Blackwell Publishing Company.Google Scholar
  47. Lin, H. (2008). The variation in spatially adjacent pollen assemblages from a potential assault location containing plants common to Taiwan and Perth, Western Australia. Unpublished MFSc dissertation, The University of Western Australia, 74 p.Google Scholar
  48. Loader, N., & Hemming, D. (2004). The stable isotope analysis of pollen as an indicator of terrestrial paleoenvironmental change: A review of progress and recent developments. Quaternary Science Reviews, 23, 893–900.CrossRefGoogle Scholar
  49. Mathewes, R. W. (2006). Forensic palynology in Canada: An overview with emphasis on archaeology and anthropology. Forensic Science International, 163, 198–203.CrossRefGoogle Scholar
  50. Matsuki, Y., Isagi, Y., & Suyama, Y. (2007). The determination of multiple microsatellite genotypes of DNA sequences from a single pollen grain. Molecular Ecology Notes, 7, 194–198.CrossRefGoogle Scholar
  51. McCrone, W. T. (1999). Judgment day for the shroud of Turin. Amherst: Prometheus Press.Google Scholar
  52. Mercuri, A. M., & Travaglini, A. (Eds.). (2009). Forensic palynology: Methods and future. European Journal of Aerobiology and Environmental Medicine, 5, 62.Google Scholar
  53. Mildenhall, D. C. (1989). Deer velvet and palynology: An example of forensic palynology in New Zealand. Tuatara, 30, 1–11.Google Scholar
  54. Mildenhall, D. C. (2009). Forensic palynology: An increasingly used tool in forensic science. European journal of aerobiology and environmental medicine, 2, 7–10.Google Scholar
  55. Mildenhall, D. C., Wiltshire, P. E. J., & Bryant, V. M. (Eds.). (2006a). Forensic palynology. Forensic Science International, 163, 161–248.Google Scholar
  56. Mildenhall, D. C., Wiltshire, P. E. J., & Bryant, V. M. (2006b). Forensic palynology: Why do it and how it works. Forensic Science International, 163, 193–172.Google Scholar
  57. Milne, L. A. (2005). Grain of truth. How pollen brought a murderer to justice. Sydney: Reed New Holland 175 p.Google Scholar
  58. Milne, L. A., Bryant, V. M., & Mildenhall, D. C. (2005). Chapter 14: Forensic palynology. In H. M. Coyle (Ed.), Forensic botany, principles and applications to criminal casework (pp. 217–252). Boca Raton: CRC Press 318 p.Google Scholar
  59. Montali, E., Mercuri, A. M., Trevisan Grandi, G., & Accorsi, C. A. (2006). Towards a “crime pollen calendar” – pollen analysis on corpses throughout one year. Forensic Science International, 163, 211–223.CrossRefGoogle Scholar
  60. Moore, P. B., & Webb, J. A. (1978). An illustrated guide to pollen analysis. New York: Wiley 133 p.Google Scholar
  61. More, S., Thapa, K. K., & Bera, S. (2013). Potential of dust and soot from air-filters of motor vehicle engines as a forensic tool: First experimental palynological approach in India. Journal of Forensic Research, 4, 177.Google Scholar
  62. Morgan, R. M., Freudiger-Bonzon, J., Nichols, K. H., Jellis, T., Dunkerly, S., Zelazowski, P., & Bull, P. (2009). The forensic analysis of sediments recovered from footwear. In K. Ritz, L. Dawson, & D. Miller (Eds.), Criminal and environmental soil forensics (pp. 253–269). Dordrecht: Springer.CrossRefGoogle Scholar
  63. Morgan, R. M., Davies, G., Balestri, F., & Bull, P. A. (2013). The recovery of pollen evidence from documents and its forensic implications. Science and Justice, 53, 375–384.CrossRefGoogle Scholar
  64. Murphy, D. B. (2001). Fundamentals of light microscopy and electronic imaging. New York: Wiley.Google Scholar
  65. Newman, C. (1984). Pollen: Breath of life and sneezes. National Geographic Magazine, 166(4), 490–521.Google Scholar
  66. Newton, P. N., Fernandez, F. M., Placon, A., Mildenhall, D. C., Green, M. D., Li, Z.-Y., Christophel, E. M., Phanouvong, S., Howells, S., McIntosh, E., Laurin, P., Blum, N., Hampton, C. Y., Faure, K., Nyadong, L., Soong, C. W. R., Santoso, B., Wang, Z.-G., Newton, J., & Palmer, K. (2008). A collaborative epidemiological investigation into the criminal fake artesunate trade in Southeast Asia. PLoS Medicine, 5(2), 0209–0219.CrossRefGoogle Scholar
  67. Nguyena, P., & Weber, M. (2015). Forensic value of pollen from ornamental indoor plants. Grana, 54(3), 236–246.CrossRefGoogle Scholar
  68. Nyadong, L., G. A. Harris, S. Balayssac, A. S. Galhena, M. Malet-Martino, R. Martino, R. M. Parry, M. D. Wang, F. M. Fernández, & V. Gilard. (2009). Combining two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real-time mass spectrometry for the integral investigation of counterfeit pharmaceuticals. Analytical Chemistry 81(12):4803–4812.CrossRefGoogle Scholar
  69. O’Rourke, M. K. (1990). Pollen reentrainment: Contributions to the pollen rain in an arid environment. Grana, 29, 147–152.CrossRefGoogle Scholar
  70. Parducci, L., Matetovici, I., Fontana, S. L., Bennett, K. D., Suyama, Y., Haile, J., Kjær, K. H., Larsen, N. K., Drouzas, A. D., & Willerslev, E. (2013). Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Molecular Ecology, 22(13), 3511–3524.CrossRefGoogle Scholar
  71. Phuphumirat, W., Mildenhall, D. C., & Purintavaragul, C. (2009). Pollen deterioration in a tropical surface soil and its impact on forensic palynology. The Open Forensic Science Journal, 2, 34–40.CrossRefGoogle Scholar
  72. Piombino-Mascali, D., Zink, A. R., Reinhard, K. J., Lein, M., Panzer, S., Aufderheide, A. C., Rachid, R., de Souza, W., Araújo, A., Chaves, S. A. M., LeRoy-Tren, S., Teixeira-Santos, I., & Dutra, J. M. F. (2013). Dietary analysis of Piraino 1, Sicily, Italy: The role of archaeopalynology in forensic science. Journal of Archaeological Science, 40, 1935–1945.CrossRefGoogle Scholar
  73. Riding, J. B., Rawlins, B. G., & Coley, K. H. (2007). Changes in soil pollen assemblages on footwear worn at different sites. Palynology, 31, 135–151.CrossRefGoogle Scholar
  74. Rolfe, W. O. (1965). Uses of ultraviolet rays. In Kummel, B. & Raup, D. (Eds.), Handbook of paleontological techniques (pp. 350–360). London: W.H. Freeman and Company.Google Scholar
  75. Rowell, L. (2009). Palynomorph retention on clothing under differing conditions. Unpublished MSc thesis, University of Western Australia: 99 p.Google Scholar
  76. Rowley, J. R., & Prijanto, B. (1977). Selective destruction of the exine of pollen grains. Geophytology, 7, 1–23.Google Scholar
  77. Sandiford, A. (2012). Palynology, pollen, and spores, partners in crime: What, why, and how. In D. W. Hall & J. H. Byrd (Eds.), Forensic botany: A practical guide (pp. 127–144). Hoboken: Wiley-Blackwell. 195 p.CrossRefGoogle Scholar
  78. Sangster, A. G., & Dale, H. M. (1961). A preliminary study of differential pollen grain preservation. Canadian Journal of Botany, 39, 35–43.CrossRefGoogle Scholar
  79. Sangster, A. G., & Dale, H. M. (1964). Pollen grain preservation of underrepresented species in fossil spectra. Canadian Journal of Botany, 42, 437–449.CrossRefGoogle Scholar
  80. Shapiro, E. (2015). Boston ‘Baby Doe’ mystery: Pollen tests reveal break in the case. ABC News.
  81. Shaw, G. (1971). The chemistry of sporopollenin. In J. Brooks, P. Grant, M. Muir, P. van Gijzel, & G. Shaw (Eds.), Sporopollenin (pp. 305–350). New York: Academic.CrossRefGoogle Scholar
  82. Shellhorn, S. J., Hull, H. M., & And Martin, P. S. (1964). Detection of fresh and fossil pollen with fluorochromes. Nature, 202, 315–316.CrossRefGoogle Scholar
  83. Stanley, E. A. (1966). The problem of reworked pollen and spores in marine sediments. Marine Geology, 4, 397–399 401–405, 407–408.CrossRefGoogle Scholar
  84. Stanley, E. A. (1992). Application of palynology to establish the provenance and travel history of illicit drugs. Microscope, 40, 149–152.Google Scholar
  85. Stoney, D. A., Bowen, A. M., Bryant, V. M., Caven, E. A., Cimino, M. T., & Stoney, P. L. (2011). Particle combination analysis for predictive source attribution: Tracing a shipment of contraband ivory. Journal of American Society of Trace Evidence Examiners, 2, 13–72.Google Scholar
  86. Szibor, R., Schubert, C., Schöning, R., Krause, D., & Wendt, U. (1998). Pollen analysis reveals murder season. Nature, 395(6701), 449–450.CrossRefGoogle Scholar
  87. Tauber, H. (1965). Differential pollen dispersion and interpretation of pollen diagrams. Danmarks Geol. Undersogebe., II, 89, 1–69.Google Scholar
  88. Traverse, A. (2007). Paleopalynology (2nd ed.). Dordrecht: Springer.Google Scholar
  89. Walker, M. (2005). Entomology and palynology: Evidence from the natural world (Forensics: The science of crime-solving). Broomall: Mason Crest Publishers 112 p.Google Scholar
  90. Webb, J. C., Brown, H. A., Toms, H., & Goodenough, A. E. (2018). Differential retention of pollen grains on clothing and the effectiveness of laboratory retrieval methods in forensic settings. Forensic Science International, 288, 36–45.CrossRefGoogle Scholar
  91. Wilson, L. R. (1964). Recycling, stratigraphic leakage, and faulty techniques in palynology. Grana, 5(3), 425–436.CrossRefGoogle Scholar
  92. Wiltshire, P. E. J. (1993). Environmental profiling and forensic palynology: Background and potential value to the criminal investigator. Handbook for the national crime and operations faculty with the British Association for human identification.Google Scholar
  93. Wiltshire, P. E. J. (2006a). Consideration of some taphonomic variables of relevance to forensic palynological investigation in the United Kingdom. Forensic Science International, 163, 173–182.CrossRefGoogle Scholar
  94. Wiltshire, P. E. J. (2006b). Hair as a source of forensic evidence in murder investigations. Forensic Science International, 163, 241–248.CrossRefGoogle Scholar
  95. Wiltshire, P. E. J. (2009). Forensic ecology, botany, and criminal palynology, some aspects of their role in criminal investigation. In K. Ritz, L. Dawson, & D. Miller (Eds.), Criminal and environmental soil forensics (pp. 129–149). Dordrecht: Springer, 520 p.CrossRefGoogle Scholar
  96. Wiltshire, P. E. J. (2016). Protocols for forensic palynology. Palynology, 40(1), 4–24.CrossRefGoogle Scholar
  97. Wiltshire, P. E. J., Hawksworth, D. L., & Edwards, K. J. (2015a). A rapid and efficient method for evaluation of suspect testimony: Palynological scanning. Journal of Forensic Sciences, 60(6), 1441–1450.CrossRefGoogle Scholar
  98. Wiltshire, P. E. J., Hawksworth, D. L., Webb, J. A., & Edwards, K. J. (2015b). Two sources and two kinds of trace evidence: Enhancing the links between clothing, footwear and crime scene. Forensic Science International, 254, 231–242.CrossRefGoogle Scholar
  99. Wodehouse, R. P. (1935). Pollen grains. New York: McGraw-Hill 574 P.Google Scholar
  100. Wu, C.-L., Yang, C.-H., Huang, T.-C., & Chen, S.-H. (2006). Forensic pollen evidence from clothes by the tape method. Taiwania 51, 123–130.Google Scholar
  101. Yeloff, D., & Hunt, C. O. (2005). Fluorescence microscopy of pollen and spores: A tool for investigating environmental change. Review of Palaeobotany and Palynology, 133, 203–219.CrossRefGoogle Scholar
  102. Zavada, M. S., McGraw, S. M., & Miller, M. A. (2007). The role of clothing fabrics as passive pollen collectors in the Northeastern United States. Grana, 46, 285–291.CrossRefGoogle Scholar
  103. Zhou, L., Pei, K., Zhou, B., & Ma, K. (2007). A molecular approach to species identification of Chenopodiaceae pollen grains in surface soil. American Journal of Botany, 94, 477–481.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Palynology Laboratory, Department of AnthropologyTexas A&M UniversityCollege StationUSA

Personalised recommendations