Advertisement

Green Machining of Thin-Wall Titanium Alloy

  • Amrifan Saladin Mohruni
  • Muhammad Yanis
  • Erna Yuliwati
  • Safian Sharif
  • Ahmad Fauzi Ismail
  • Irsyadi Yani
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Titanium and its alloys are well known as difficult-to-machine materials due to low thermal conductivity and chemical adherent to cutting tools. Ti6Al4V is most widely used in a thin-wall structure application in the field of aerospace industry. Thin-wall machining encounters vibration and that furthermore increases fluctuations in cutting force. Select the type of machining process that generates sustainability in thin-wall machining is crucial to master. One of the innovations in conventional machining is to promote vegetable oils as the cutting fluids. These cutting fluids offer environmentally friendly cooling as well as lubrication to foster the cleaner production in the aerospace industry. Hence, the capable, sustainable cutting fluid has to be a future of the machining process. Minimum quantity lubrication (MQL) using coconut oil is recognised to be the green machining technique in milling titanium alloy. Coconut oils as nanofluids are attracting considerable attention due to good lubrication properties, non-toxic and biodegradable nature, and easy recycling. Therefore, it is a significant finding to observe the stability, dynamic behaviour, surface quality, and environmental aspects of cutting fluids in milling thin-walled Ti6Al4V. The findings reported in this chapter show that the use of coconut oil in the MQL system for thin-wall machining of Ti6Al4V is a promising innovation in the future of aerospace industries. At last, this chapter also sheds light on the treatment of exhausted cutting fluids.

Keywords

Thin wall Titanium alloy Vibration Surface quality MQL Nanofluids Sustainable cutting fluids 

References

  1. 1.
    Sharif S, Sadiq IO, Yusof NM, Mohruni AS (2017) A review of minimum quantity lubrication technique with nanofluids application in metal cutting operations. Int J Adv Sci Eng Inf Technol 7(2):1–5. http://ijaseit.insightsociety.org/index.php?option=com_content&viDOI:10.18517/ijaseit.7.2.2141CrossRefGoogle Scholar
  2. 2.
    Sharma AK, Tiwari AK, Dixit AR (2016) Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J Clean Prod 127:1–18.  https://doi.org/10.1016/j.jclepro.2016.03.146CrossRefGoogle Scholar
  3. 3.
    Shashidhara YM, Jayaram SR (2010) Vegetable oils as a potential cutting fluid-an evolution. Tribol Int 43(5–6):1073–1081.  https://doi.org/10.1016/j.triboint.2009.12.065CrossRefGoogle Scholar
  4. 4.
    Gupta K, Laubscher RF (2016) MQL assisted machining of grade-4 Titanium. In: Proceedings of international conference on competitive manufacturing (COMA), Stellenbosch (South Africa), 27–29 Jan 2016, pp 211–217Google Scholar
  5. 5.
    Lawal SA, Choudhury IA, Nukman Y (2013) A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J Clean Prod 41:210–221.  https://doi.org/10.1016/j.jclepro.2012.10.016CrossRefGoogle Scholar
  6. 6.
    Gupta K, Laubscher RF (2017) Sustainable machining of titanium alloys—a critical review. Proc IMechE Part B J Eng Manuf 231(14):2543–2560 (Sage)CrossRefGoogle Scholar
  7. 7.
    Izamshah R, Mo JPT, Ding S (2011) Hybrid deflection prediction on machining thin-wall monolithic aerospace components. Proc Inst Mec Eng Part B J Eng Manuf 226(4):592–605.  https://doi.org/10.1177/0954405411425443CrossRefGoogle Scholar
  8. 8.
    Huang YA, Zhang X, Xiong Y (2012) Finite element analysis of machining thin-wall parts: error prediction and stability analysis. In: Ebrahimi F (ed) Finite element analysis—applications in mechanical engineering, 1st edn. pp 327–354. In Tech. doi:http://dx.doi.org/10.5772/50374Google Scholar
  9. 9.
    Pal Pandian P, Prabhu Raja V, Sakthimurugan K (2013) Surface error compensation in HSM of thin wall structures. Int J Eng Sci Invention 2(2):1–11Google Scholar
  10. 10.
    Scippa A, Grossi N, Campatelli G (2014) FEM based cutting velocity selection for thin walled part machining. Procedia CIRP 14(HPC):287–292.  https://doi.org/10.1016/j.procir.2014.03.023CrossRefGoogle Scholar
  11. 11.
    Sun C, Shen X, Wang W (2016) Study on the milling stability of titanium alloy thin-walled parts considering the stiffness characteristics of tool and workpiece. Procedia CIRP 56(DET):580–584.  https://doi.org/10.1016/j.procir.2016.10.114CrossRefGoogle Scholar
  12. 12.
    Polishetty A, Goldberg M, Littlefair G, Puttaraju M, Patil P, Kalra A (2014) A preliminary assessment of machinability of titanium alloy Ti6Al4V during thin wall machining using trochoidal milling. Procedia Eng 97(GCMM):357–364.  https://doi.org/10.1016/j.proeng.2014.12.259CrossRefGoogle Scholar
  13. 13.
    Park KH, Yang GD, Suhaimi MA, Lee DY, Kim TG, Kim DW, Lee SW (2015) The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti6Al4V. J Mech Sci Technol 29(12):5121–5126.  https://doi.org/10.1007/s12206-015-1110-1CrossRefGoogle Scholar
  14. 14.
    Feng J, Sun Z, Jiang Z, Yang L (2016) Identification of chatter in milling of Ti6Al4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography. Int J Adv Manuf Technol 82(9–12):1909–1920.  https://doi.org/10.1007/s00170-015-7509-0CrossRefGoogle Scholar
  15. 15.
    Park K-H, Suhaimi MA, Yang G-D, Lee D-Y, Lee S-W, Kwon P (2017) Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). Int J Precis Eng Manuf 18(1):5–14.  https://doi.org/10.1007/s12541-017-0001-zCrossRefGoogle Scholar
  16. 16.
    Bravo U, Altuzarra O, López De Lacalle LN, Sánchez JA, Campa FJ (2005) Stability limits of milling considering the flexibility of the workpiece and the machine. Int J Mach Tools Manuf 45(15):1669–1680.  https://doi.org/10.1016/j.ijmachtools.2005.03.004CrossRefGoogle Scholar
  17. 17.
    Zhang L, Gao W, Zhang D, Tian Y (2016) Prediction of dynamic milling stability considering time variation of deflection and dynamic characteristics in thin-walled component milling process. Shock Vib 2016(3984186):1–15.  https://doi.org/10.1155/2016/3984186CrossRefGoogle Scholar
  18. 18.
    Antonialli AÍS, Diniz AE, Pederiva R (2010) Vibration analysis of cutting force in titanium alloy milling. Int J Mach Tools Manuf 50(1):65–74.  https://doi.org/10.1016/j.ijmachtools.2009.09.006CrossRefGoogle Scholar
  19. 19.
    Çomak A, Koca R, Özkırımlı ÖM, Budak E (2013) Modeling and simulation based design of variable pitch and variable helix milling tools for increased chatter stability. In: 7th international conference and exhibition on design and production of machines and dies/molds, Antalya, Turkey, pp 1–11. Retrieved from http://research.sabanciuniv.edu/23888/
  20. 20.
    Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47.  https://doi.org/10.1016/j.jclepro.2014.07.071CrossRefGoogle Scholar
  21. 21.
    Boswell B, Islam MN, Davies IJ, Ginting YR, Ong AK (2017) A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int J Adv Manuf Technol 92(1–4):321–340.  https://doi.org/10.1007/s00170-017-0142-3CrossRefGoogle Scholar
  22. 22.
    Debnath S, Reddy MM, Yi QS (2016) Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method. Measurement 78:111–119.  https://doi.org/10.1016/j.measurement.2015.09.011CrossRefGoogle Scholar
  23. 23.
    Sharma VSS, Singh G, Sørby K (2015) A review on minimum quantity lubrication for machining processes machining processes. Mach Sci Technol 30(8):935–953.  https://doi.org/10.1080/10426914.2014.994759CrossRefGoogle Scholar
  24. 24.
    Sinha JK (2015) Vibration analysis, instruments, and signal processing. CRC Press, Taylor & Francis Group, Boca Raton, London, New YorkGoogle Scholar
  25. 25.
    Huang P, Li J, Sun J, Zhou J (2013) Vibration analysis in milling titanium alloy based on signal processing of cutting force. Int J Adv Manuf Technol 64(5–8):613–621.  https://doi.org/10.1007/s00170-012-4039-xCrossRefGoogle Scholar
  26. 26.
    Huang PL, Li JF, Sun J, Jia XM (2016) Cutting signals analysis in milling titanium alloy thin-part components and non-thin-wall components. Int J Adv Manuf Technol 84(9):2461–2469.  https://doi.org/10.1007/s00170-015-7837-0CrossRefGoogle Scholar
  27. 27.
    Mohruni AS, Yanis M, Kurniawan E (2018) Development of surface roughness prediction model for hard turning on AISI D2 steel using Cubic Boron Nitride (CBN) insert. J Technol Sci Eng 80(1):1–6Google Scholar
  28. 28.
    Kulkarni PP, Shreelakshmi CT, Shruti VH, Radha BN (2014) An experimental investigation of effect of cutting fluids on chip formation and cycle time in turning of EN-24 and EN-31 material. Int J Eng Sci Res Technol 3(11):574–582Google Scholar
  29. 29.
    Mohruni AS, Yuliwati E, Sharif S, Ismail AF (2017) Membrane technology for treating of waste nanofluids coolant: a review. AIP Conf Proc 1885(20090):1–7.  https://doi.org/10.1063/1.5002284CrossRefGoogle Scholar
  30. 30.
    Ismail AF, Yuliwati E (2010) PVDF-TIO2 submerged hollow fiber membrane in refinery produced wastewater treatment. In: The 1st IWA Malaysia young water professionals conference (IWAYWP 2010), Advanced Membrane Technology (AMTECH), Kula Lumpur, Malaysia, 2–4 May 2010Google Scholar
  31. 31.
    Gibon V, De Greyt W, Kellens M (2007) Palm oil refining. Eur J Lipid Sci Technol 109(4):315–335.  https://doi.org/10.1002/ejlt.200600307CrossRefGoogle Scholar
  32. 32.
    Yuliwati E, Ismail AF, Mohruni AS, Mataram A (2018) Optimum parameters for treating coolant wastewater using PVDF-membrane. J Technol Sci Eng, 80 (In-Press), xxxxGoogle Scholar
  33. 33.
    Bottino A, Capannelli G, Comite A, Mangano R (2009) Critical flux in submerged membrane bioreactors for municipal wastewater treatment. Desalination 245(1–3):748–753.  https://doi.org/10.1016/j.desal.2009.02.047CrossRefGoogle Scholar
  34. 34.
    Hami ML, Al-Hashimi MA, Al-Doori MM (2007) Effect of activated carbon on BOD and COD removal in a dissolved air flotation unit treating refinery wastewater. Desalination 216(1–3):116–122.  https://doi.org/10.1016/j.desal.2007.01.003CrossRefGoogle Scholar
  35. 35.
    Kobya M, Demirbas E, Bayramoglu M, Sensoy MT (2011) Optimization of electrocoagulation process for the treatment of metal cutting wastewaters with response surface methodology. Water Air Soil Pollut 215(1–4):399–410.  https://doi.org/10.1007/s11270-010-0486-xCrossRefGoogle Scholar
  36. 36.
    Khouni I, Marrot B, Moulin P, Ben Amar R (2011) Decolourization of the reconstituted textile effluent by different process treatments: enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination 268(1–3):27–37.  https://doi.org/10.1016/j.desal.2010.09.046CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amrifan Saladin Mohruni
    • 1
  • Muhammad Yanis
    • 1
  • Erna Yuliwati
    • 2
  • Safian Sharif
    • 3
  • Ahmad Fauzi Ismail
    • 4
  • Irsyadi Yani
    • 1
  1. 1.Mechanical Engineering DepartmentSriwijaya UniversitySouth SumateraIndonesia
  2. 2.Chemical Engineering DepartmentMuhammadiyah UniversitySouth SumateraIndonesia
  3. 3.Department of MaterialsManufacture and Industrial Engineering, Universiti Teknologi MalaysiaSkudai-JohorMalaysia
  4. 4.Advanced Membrane Technology Research Center (AMTEC)Universiti Teknologi MalaysiaSkudai-JohorMalaysia

Personalised recommendations