Sustainability in Welding and Processing

  • Kush P. MehtaEmail author
Part of the Materials Forming, Machining and Tribology book series (MFMT)


Sustainable manufacturing considers environmental impact, energy utilization and economic impacts on process of creating product. Welding and processing is one of the most important elements of manufacturing field. Sustainability in welding and processing is the area of concern for today’s field of manufacturing. The present chapter elucidates components of sustainability for different welding and processing techniques. The discussions on energy saving, material waste, resources and parameters, environmental benefits and cost-saving capabilities of different welding processes are highlighted. Aforementioned sustainable interventions are addressed under various categories of welding and processing such as fusion arc welding, friction-based welding and processing, laser-based welding and processing, magnetic field-based processes and ultrasonic welding.


Energy Environmental impact Processing Sustainability Welding 


  1. 1.
    Garetti M, Taisch M (2012) Sustainable manufacturing: trends and research challenges. Prod Plann Control 23(2–3):83–104CrossRefGoogle Scholar
  2. 2.
    Mehta K (2017) Advanced joining and welding techniques: an overview. In: Advanced manufacturing technologies. Springer International Publishing, Switzerland, pp 101–136. Scholar
  3. 3.
    Haapala KR, Zhao F, Camelio J, Sutherland JW, Skerlos SJ, Dornfeld DA, Rickli JL (2013) A review of engineering research in sustainable manufacturing. J Manuf Sci Eng 135(4):041013CrossRefGoogle Scholar
  4. 4.
    Dubey R, Gunasekaran A, Chakrabarty A (2015) World-class sustainable manufacturing: framework and a performance measurement system. Int J Prod Res 53(17):5207–5223CrossRefGoogle Scholar
  5. 5.
    Gupta K, Laubscher RF, Davim JP, Jain NK (2016) Recent developments in sustainable manufacturing of gears: a review. J Cleaner Prod 112(4):3320–3330. (IF-5.7)CrossRefGoogle Scholar
  6. 6.
    Gupta K, Laubscher RF (2017) Sustainable machining of titanium alloys—a critical review. Proc IMechE Part B J Eng Manuf 231(14):2543–2560 (IF-1.36)CrossRefGoogle Scholar
  7. 7.
    Bonvoisin J, Stark R, Seliger G (2017) Field of research in sustainable manufacturing. In: Sustainable manufacturing. Springer International Publishing, Switzerland, pp 3–20CrossRefGoogle Scholar
  8. 8.
    Vimal KEK, Vinodh S, Raja A (2015) Modelling, assessment and deployment of strategies for ensuring sustainable shielded metal arc welding process—a case study. J Clean Prod 93:364–377CrossRefGoogle Scholar
  9. 9.
    Sproesser G, Schenker S, Pittner A, Borndörfer R, Rethmeier M, Chang YJ, Finkbeiner M (2016) Sustainable welding process selection based on weight space partitions. Procedia CIRP 40:127–132CrossRefGoogle Scholar
  10. 10.
    Sangwan KS, Herrmann C, Egede P, Bhakar V, Singer J (2016) Life cycle assessment of arc welding and gas welding processes. Procedia CIRP 48:62–67CrossRefGoogle Scholar
  11. 11.
    Chang YJ, Sproesser G, Neugebauer S, Wolf K, Scheumann R, Pittner A, Rethmeier M, Finkbeiner M (2015) Environmental and social life cycle assessment of welding technologies. Procedia CIRP 26:293–298CrossRefGoogle Scholar
  12. 12.
    Sproesser G, Pittner A, Rethmeier M (2016) Increasing performance and energy efficiency of gas metal arc welding by a high power tandem process. Procedia CIRP 40:642–647CrossRefGoogle Scholar
  13. 13.
    Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2017) Environmental energy efficiency of single wire and tandem gas metal arc welding. Weld World 61(4):733–743CrossRefGoogle Scholar
  14. 14.
    Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2017) Sustainable technologies for thick metal plate welding. In: Sustainable manufacturing. Springer International Publishing, Switzerland, pp 71–84CrossRefGoogle Scholar
  15. 15.
    Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2015) Life cycle assessment of welding technologies for thick metal plate welds. J Clean Prod 108:46–53CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2017) Energy efficiency and environmental impacts of high power gas metal arc welding. Int J Adv Manuf Technol 91(9–12):3503–3513CrossRefGoogle Scholar
  18. 18.
    Vidyarthy RS, Dwivedi DK (2016) Activating flux tungsten inert gas welding for enhanced weld penetration. J Manuf Process 22:211–228CrossRefGoogle Scholar
  19. 19.
    Huang HY (2010) Effects of activating flux on the welded joint characteristics in gas metal arc welding. Mater Design (1980–2015) 31(5):2488–2495CrossRefGoogle Scholar
  20. 20.
    Garg A, Panda B, Shankhwar K (2016) Investigation of the joint length of weldment of environmental-friendly magnetic pulse welding process. Int J Adv Manuf Technol 87(5–8):2415–2426CrossRefGoogle Scholar
  21. 21.
    Kapil A, Sharma A (2015) Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J Clean Prod 100:35–58CrossRefGoogle Scholar
  22. 22.
    Broeckhove J, Willemsens L, Faes K (2010) Magnetic pulse welding. Sustain Constr Des 1(1):21Google Scholar
  23. 23.
    Shribman C (2008) Magnetic pulse welding for dissimilar and similar materials. In: Procedings of 3rd International Conference on High Speed Forming, Dortmund, GermanyGoogle Scholar
  24. 24.
    Sackmann J, Burlage K, Gerhardy C, Memering B, Liao S, Schomburg WK (2015) Review on ultrasonic fabrication of polymer micro devices. Ultrasonics 56:189–200CrossRefGoogle Scholar
  25. 25.
    Rashli R, Bakar EA, Kamaruddin S, Othman AR (2013) A review of ultrasonic welding of thermoplastic composites. Caspian J Appl Sci Res 2(3)Google Scholar
  26. 26.
    Harman G, Albers J (1977) The ultrasonic welding mechanism as applied to aluminum-and gold-wire bonding in microelectronics. IEEE Trans Parts Hybrids Packag 13(4):406–412CrossRefGoogle Scholar
  27. 27.
    Mehta K, Gupta M, Sharma P (2018) Nano-machining, nano-joining and nano-welding. In: Micro and precision manufacturing. Springer International Publishing, SwitzerlandGoogle Scholar
  28. 28.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1):1–78CrossRefGoogle Scholar
  29. 29.
    Mehta KP (2017) Investigation of friction stir welding between dissimilar materials copper to aluminum, Ph.D. thesisGoogle Scholar
  30. 30.
    Miles M, Hong ST, Woodward C, Jeong YH (2013) Spot welding of aluminum and cast iron by friction bit joining. Int J Precision Eng Manuf 14(6):1003–1006CrossRefGoogle Scholar
  31. 31.
    Evans WT, Cook GE, Strauss AM (2017) Joining aerospace aluminum 2024-T4 to titanium by friction stir extrusion. In: Friction stir welding and processing IX. Springer International Publishing, Switzerland, pp 79–89Google Scholar
  32. 32.
    Hanke S, Sena I, Coelho RS, dos Santos JF (2017) Microstructural features of dynamic recrystallization in alloy 625 friction surfacing coatings. Mater Manuf Process 1–7Google Scholar
  33. 33.
    Satyanarayana VV, Reddy GM, Mohandas T (2005) Dissimilar metal friction welding of austenitic–ferritic stainless steels. J Mater Process Technol 160(2):128–137CrossRefGoogle Scholar
  34. 34.
    Vairis A, Frost M (1998) High frequency linear friction welding of a titanium alloy. Wear 217(1):117–131CrossRefGoogle Scholar
  35. 35.
    Hancock R (2004) Friction welding of aluminum cuts energy costs by 99%. Weld J NY 83(2):40–43Google Scholar
  36. 36.
    Mehta KP, Badheka VJ (2016) A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater Manuf Process 31(3):233–254CrossRefGoogle Scholar
  37. 37.
    Mehta KP, Badheka VJ (2016) Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Mater Manuf Process 31(3):255–263CrossRefGoogle Scholar
  38. 38.
    Mehta KP, Badheka VJ (2015) Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joints. Int J Adv Manuf Technol 80(9–12):2073–2082CrossRefGoogle Scholar
  39. 39.
    Mehta KP, Badheka VJ (2017) Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. J Mater Process Technol 239:336–345CrossRefGoogle Scholar
  40. 40.
    Mehta KP, Badheka VJ (2016) Effects of tool pin design on formation of defects in dissimilar friction stir welding. Procedia Technol 23:513–518CrossRefGoogle Scholar
  41. 41.
    Mehta KP, Badheka V (2016) Experimental investigation of process parameters on defects generation in copper to AA6061-T651 friction stir welding. Int J Adv Mech Autom Eng (IJAMAE) 3(1):55–58Google Scholar
  42. 42.
    Dorbane A, Mansoor B, Ayoub G, Shunmugasamy VC, Imad A (2016) Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Mater Sci Eng A 651:720–733CrossRefGoogle Scholar
  43. 43.
    El Chlouk ZG, Ayoub G, Kridli GT, Hamade RF (2014) Intermetallic compound formation in Al/Mg friction stir welded (FSW) butt joints. In: Proceedings of ASME 2014 international mechanical engineering congress and exposition, V014T011A010Google Scholar
  44. 44.
    Bozzi S, Helbert-Etter AL, Baudin T, Criqui B, Kerbiguet JG (2010) Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater Sci Eng A 527(16):4505–4509CrossRefGoogle Scholar
  45. 45.
    Li XING, Lei LI, Liming KE (2007) Microstructural investigation on friction stir welds of dissimilar metals between mild steel and copper. Trans China Weld Inst 2:004Google Scholar
  46. 46.
    Bevilacqua M, Ciarapica FE, D’Orazio A, Forcellese A, Simoncini M (2017) Sustainability analysis of friction stir welding of AA5754 sheets. Procedia CIRP 62:529–534CrossRefGoogle Scholar
  47. 47.
    Su P, Gerlich A, North TH, Bendzsak GJ (2006) Energy utilisation and generation during friction stir spot welding. Sci Technol Weld Joining 11(2):163–169CrossRefGoogle Scholar
  48. 48.
    Okamoto K, Hunt F, Hirano S (2005) Development of friction stir welding technique and machine for aluminum sheet metal assembly-friction stir welding of aluminum for automotive applications (2) (No. 2005-01-1254). SAE technical paperGoogle Scholar
  49. 49.
    Klobčar D, Tušek J, Smolej A, Simončič S (2015) Parametric study of FSSW of aluminium alloy 5754 using a pinless tool. Weld World 59(2):269–281CrossRefGoogle Scholar
  50. 50.
    Tier MD, Rosendo TS, dos Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaecker TR (2013) The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol 213(6):997–1005CrossRefGoogle Scholar
  51. 51.
    Tumuluru MD (2006) Resistance spot welding of coated high-strength dual-phase steels. Weld J 85(8):31–37Google Scholar
  52. 52.
    Kaierle S, Dahmen M, Gdkkurt O (2011) Eco-efficiency of laser welding applications. In: Proceedings of SPIE, vol 8065, p 80650TGoogle Scholar
  53. 53.
    Wei H, Zhang Y, Tan L, Zhong Z (2015) Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption. J Clean Prod 87:255–262CrossRefGoogle Scholar
  54. 54.
    Mazumder J (1982) Laser welding: state of the art review. JOM 34(7):16–24CrossRefGoogle Scholar
  55. 55.
    Apostolos F, Alexios P, Georgios P, Panagiotis S, George C (2013) Energy efficiency of manufacturing processes: a critical review. Procedia CIRP 7:628–633CrossRefGoogle Scholar
  56. 56.
    Wieschemann A, Kelle H, Dilthey D (2003) Hybrid-welding and the HyDRA MAG + LASER processes in shipbuilding. Weld Int 17(10):761–766CrossRefGoogle Scholar
  57. 57.
    Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of TechnologyPandit Deendayal Petroleum UniversityRaisan, GandhinagarIndia

Personalised recommendations