Advertisement

Sustainability Issues in Electric Discharge Machining

  • Janak B. ValakiEmail author
  • Pravin P. Rathod
  • Ajay M. Sidpara
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Electric discharge machining is a well-known advanced machining process extensively used for difficult-to-machine materials, microparts and precision engineering components for various biomedical, scientific and industrial applications. In spite of EDM’s special characteristics, this process suffers from major limitations as regards to sustainability. High specific energy consumption, hazardous emissions, operator health and safety risk, generation of toxic waste and sludge, etc., are the major issues. This chapter introduces EDM, highlights and discusses inherent sustainability issues, and suggests possible solutions. An experimental study based on the use of sustainable dielectrics is the main part of this chapter. The effects of EDM parameters on material removal rate, surface roughness, and other surface integrity characteristics under the influence of sustainable dielectric fluids are discussed. The chapter ends with the conclusions and possible avenues of future research.

Keywords

Sustainable manufacturing Wet EDM Dry EDM Near-dry EDM Sustainability Vegetable oil 

Notations

EDM

Electric discharge machining

PAH

Polycyclic aromatic hydrocarbons (PAH)

BTEX

Benzene, toluene, ethylene–benzene and xyle

HAZOP

Hazard and operability analysis

W/O

Water-in-oil

BD1

Jatropha oil-based biodielectric fluid

BD2

Waste vegetable oil-based biodielectric fluid

References

  1. 1.
    Moser H (2001) Growth industries rely on EDM. Manuf Eng 127:62–68Google Scholar
  2. 2.
    Boothroyd G, Winston AK (1989) Non-conventional machining processes. Fundamentals of machining and machine tools. Marcel Dekker, Inc., New York, p 491Google Scholar
  3. 3.
    El-Hofy H (2005) Advanced machining processes: nontraditional and hybrid machining processes. McGraw Hill Professional, New YorkGoogle Scholar
  4. 4.
    Sivapirakasam SP, Mathew J, Surianarayanan M (2011) Multi-attribute decision making for green electrical discharge machining. Expert Syst Appl 38(7):8370–8374CrossRefGoogle Scholar
  5. 5.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:287–1300Google Scholar
  6. 6.
    Leao FN, Pashby IR (2004) A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149:341–346CrossRefGoogle Scholar
  7. 7.
    Valaki JB, Rathod PP (2016) Investigating feasibility through performance analysis of green dielectrics for sustainable electric discharge machining. Mater Manuf Process 31(4):541–549CrossRefGoogle Scholar
  8. 8.
    Bommeli B (1983) Study of the harmful emanations resulting from the machining by electro-erosion. In: Proceedings of the seventh international symposium on electro machining (ISEM VII), pp 469–478Google Scholar
  9. 9.
    Tonshoff HK, Egger R, Klocke F (1996) Environmental and safety aspects of electro physical and electrochemical processes. Ann CIRP–Manuf Technol 45(2):553–568CrossRefGoogle Scholar
  10. 10.
    Valaki JB, Rathod PP, Khatri BC (2014) Environmental impact, personnel health and operational safety aspects of electric discharge machining: a review. Proc Inst Mech Eng Part B J Eng Manuf 229(9):1481–1491CrossRefGoogle Scholar
  11. 11.
    Evertz S, Eisentraeger A, Dotti W, Klocke F, Karden A, Antonoglou G (2001) Environmental and industrial hygiene in connection with electrical discharge machining at high discharge energies. In: Proceedings of the 13th international symposium on electro machining (ISEM XIII), vol I, pp 193–210Google Scholar
  12. 12.
    Abbas NM, Yusoff N, Wahab RM (2012) Electrical discharge machining (EDM): practices in malaysian industries and possible change towards green manufacturing. Procedia Eng 41:1684–1688, Int Symp Robot Intell Sens (IRIS 2012) 41(C):1684–1688CrossRefGoogle Scholar
  13. 13.
    Skrabalak G, Kozak J (2010) Study on dry electrical discharge machining. In: Proceedings of the world congress on engineering, vol III, June 30–July 2, London, UKGoogle Scholar
  14. 14.
    Tanimura T, Isuzugawa K, Fujita I (1989) Development of EDM in the mist. In: Proceedings of 9th international symposium electromachining (ISEM IX), pp 313–316Google Scholar
  15. 15.
    US Department of Commerce (2009) Sustainable manufacturing initiative. In: Proceedings of the 2nd annual sustainable manufacturing summit 2009, Chicago, USAGoogle Scholar
  16. 16.
    Rotella G, Lu T, Settineri L, Dillon OW Jr, Jawahir IS (2012) Dry and cryogenic machining: comparison from the sustainability perspective. In: 9th global conference on sustainable manufacturing. Springer, Berlin, pp 95–100CrossRefGoogle Scholar
  17. 17.
    Gupta K, Laubscher RF, Davim JP, Jain NK (2016) Recent developments in sustainable manufacturing of gears: a review. J Cleaner Prod 112:3320–3330CrossRefGoogle Scholar
  18. 18.
    Gupta K, Laubscher RF (2017) Sustainable machining of titanium alloys: a critical review. Proc Inst Mech Eng Part B J Eng Manuf 231(14):2543–2560CrossRefGoogle Scholar
  19. 19.
    Yeo SH, Tan HC, New AK (1998) Assessment of waste streams in electric-discharge machining for environmental impact analysis. Proc Inst Mech Eng Part B J Eng Manuf 212:393–401CrossRefGoogle Scholar
  20. 20.
    Jawahir IS, Rouch KE, Dillon OW, Hollway L, Hall A, Knuf J (2005) Design for sustainability (DFS): new challenges in developing and implementing a curriculum for next generation design and manufacturing engineers. In: SME international conference on manufacturing education, University of Kentucky, Lexington, Kentucky, USAGoogle Scholar
  21. 21.
    Brouwer DH, Gijsbers JHJ, Lurvink MWM (2004) Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg 48:439–453Google Scholar
  22. 22.
    Ross AS, Teschke K, Brauer M et al (2004) Determinants of exposure to metalworking fluid aerosol in small machine shops. Ann Occup Hyg 48:383–391Google Scholar
  23. 23.
    Evertz S, Dott W, Eisentraeger A (2006) Electrical discharge machining: occupational hygienic characterization using emission based monitoring. Int J Hyg Environ Health 209(55):423–434CrossRefGoogle Scholar
  24. 24.
    Lin CT, Chow HM, Yang LD, Chen YF (2007) Feasibility study of micro-slit EDM machining using pure water. Int J Adv Manuf Tech 34(1–2):104–110CrossRefGoogle Scholar
  25. 25.
    Kellens K, Dewulf W, Duflou JR (2011) Preliminary environmental assessment of electrical discharge machining. In: Glocalized solutions for sustainability in manufacturing: proceedings of the 18th CIRP international conference on life cycle engineering, Technische Universität Braunschweig, Braunschweig, Germany, pp 5–10Google Scholar
  26. 26.
    Abbas NM, Yusoff N, Wahab RM (2012) Electrical discharge machining (EDM): practices in malaysian industries and possible change towards green manufacturing. In: Procedia engineering, international symposium on robotics and intelligent sensors (IRIS 2012), vol 41, pp 1684–1688CrossRefGoogle Scholar
  27. 27.
    Liu Y, Zhang Y, Ji R, et al (2013) Experimental characterization of sinking electrical discharge machining using water in oil emulsion as dielectric. Mater Manuf Process 28:355–363CrossRefGoogle Scholar
  28. 28.
    Jeswani ML (1981) Electrical discharge machining in distilled water. Wear 72:81–88CrossRefGoogle Scholar
  29. 29.
    Konig W, Jorres L (1987) Aqueous solutions of organic compounds as dielectrics for EDM sinking. Ann ClRP 36(1):2005–2008CrossRefGoogle Scholar
  30. 30.
    Cho MH (2004) Environmental constituents of electrical discharge machining. BS thesis, MIT, pp 1–31Google Scholar
  31. 31.
    Tao J, Shih AJ, Ni J (2008) Experimental study of the dry and near dry electrical discharge milling processes. J Manuf Sci Eng 130(1):1–8CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Liu Y, Shen Y, Ji R et al (2013) Die-sinking electrical discharge machining with oxygen-mixed water-in-oil emulsion working fluid. Proc IMechE Part B J Eng Manuf 227(1):109–118CrossRefGoogle Scholar
  33. 33.
    Jawahir IS, Dillon OW (2007) Sustainable manufacturing processes: new challenges for developing predictive models and optimization techniques. In: Proceedings of the first international conference on sustainable manufacturing, Montreal, Canada, pp 1–19Google Scholar
  34. 34.
    Valaki JB, Rathod PP, Sankhavara CD (2016) Investigations on technical feasibility of Jatropha curcas oil based bio dielectric fluid for sustainable electric discharge machining (EDM). J Manuf Process 22:151–160CrossRefGoogle Scholar
  35. 35.
    Tao J, Shih AJ, Ni J (2008) Near-dry EDM milling of mirror-like surface finish. Int J Electr Mach 13(1):29–33Google Scholar
  36. 36.
    Valaki JB, Rathod PP (2015) Assessment of operational feasibility of waste vegetable oil based bio-dielectric fluid for sustainable electric discharge machining (EDM). Int J Adv Manuf Technol 1–0Google Scholar
  37. 37.
    Khan MI, Chhetri AB, Islam MR (2007) Analyzing sustainability of community based energy technologies. Energy Sour 2:403–419CrossRefGoogle Scholar
  38. 38.
    Kulkarni MG, Dalai AK (2006) Waste cooking oils an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913CrossRefGoogle Scholar
  39. 39.
    Chhetri AB, Watts KC, Islam MR (2008) Waste cooking oil as an alternate feedstock for biodiesel production. Energies 1(1):3–18.  https://doi.org/10.3390/en1010003CrossRefGoogle Scholar
  40. 40.
    Giakoumis EG (2013) A statistical investigation of biodiesel physical and chemical properties and their correlation with the degree of unsaturation. Renew Energy 50:858–878CrossRefGoogle Scholar
  41. 41.
    Kiyak M, Aldemir BE, Altan E (2015) Effects of discharge energy density on wear rate and surface roughness in EDM. Int J Adv Manuf Technol 79(1–4):513–518CrossRefGoogle Scholar
  42. 42.
    Wang X, Liu Z, Xue R, Tian Z, Huang Y (2014) Research on the influence of dielectric characteristics on the EDM of titanium alloy. Int J Adv Manuf Technol 72(5–8):979–987CrossRefGoogle Scholar
  43. 43.
    Amorim FL, Weingaertner WL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Braz Soc Mech Sci Eng 29(4):366–371CrossRefGoogle Scholar
  44. 44.
    Singh H (2012) Investigating the effect of copper chromium and aluminum electrodes on EN-31 die steel on electric discharge machine using positive polarity. Proc World Congr Eng Lond UK 3:2–6Google Scholar
  45. 45.
    Dewangan SK (2010) Experimental investigation of machining parameters for EDM using U-shaped electrode of AISI P20 tool steel. MTech thesisGoogle Scholar
  46. 46.
    Khan MA, Rahman MM, Kadirgama K (2015) An experimental investigation on surface finish in die-sinking EDM of Ti-5Al-2.5Sn. Int J Adv Manuf Technol 77(9–12):1727–1740CrossRefGoogle Scholar
  47. 47.
    Mukherjee NP, Ravi B (2005) An integrated framework for die and mold cost estimation using design features and tooling parameters. Int J Adv Manuf Technol 26(9–10):1138–1149Google Scholar
  48. 48.
    Coldwell H, Woods R, Paul M, Koshy P, Dewes R, Aspinwall D (2003) Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools. J Mater Process Technol 135(2):301–311CrossRefGoogle Scholar
  49. 49.
    Lin YC, Cheng CH, Su BL, Hwang LR (2006) Machining characteristics and optimization of machining parameters of SKH 57 high-speed steel using electrical-discharge machining based on Taguchi method. Mater Manuf Process 21(8):922–929CrossRefGoogle Scholar
  50. 50.
    Ji R, Liu Y, Zhang Y, Cai B, Ma J, Li X (2012) Influence of dielectric and machining parameters on the process performance for electric discharge milling of SiC ceramic. Int J Adv Manuf Technol 59(1–4):127–136CrossRefGoogle Scholar
  51. 51.
    Fonseca J, Marafona JD (2014) The effect of deionisation time on the electrical discharge machining performance. Int J Adv Manuf Technol 71(1–4):471–481CrossRefGoogle Scholar
  52. 52.
    Liu Y, Ji R, Zhang Y, Zhang H (2010) Investigation of emulsion for die sinking EDM. Int J Adv Manuf Technol 47(1–4):403–409CrossRefGoogle Scholar
  53. 53.
    Atefi R, Razmavar A, Teimoori F, Teimoori F (2012) The investigation of EDM parameters in finishing stage on surface quality using hybrid model. J Basic Appl Sci Res 2(3):3061–3065Google Scholar
  54. 54.
    Daneshmand S, Kahrizi E (2013) Influence of machining parameters on electro discharge machining of NiTi shape memory alloys. Int J Electrochem 8:3095–3104Google Scholar
  55. 55.
    Shabgard M, Seyedzavvar M, Oliaei SNB (2011) Influence of input parameters on the characteristics of the EDM process. Stroj Vestnik/J Mech Eng 57:689–696CrossRefGoogle Scholar
  56. 56.
    Kansal HK, Singh S, Kumar P (2006) An experimental study of the machining parameters in powder mixed electric discharge machining of Al–10% SiCP metal matrix composites. Int J Mach Mach Mater 1(4):396–411Google Scholar
  57. 57.
    Tani T, Fukazawa F, Mohri N, Okada M (2001) Machining phenomena in EDM of insulating ceramics using powder suspended working oil. In: 12th ISEM Bilbao, pp 388–392Google Scholar
  58. 58.
    Tao J (2008) Investigation of dry & near dry electrical discharge milling process. Ph.D. thesis, University of MichiganGoogle Scholar
  59. 59.
    Lee LC, Lim LC, Narayanan V, Venkatesh VC (1988) Quantification of surface damage of tool steels after EDM. Int J Mach Tools Manuf 28(4):359–372CrossRefGoogle Scholar
  60. 60.
    Kumar A, Kumar V, Kumar J (2013) Metallographic analysis of pure titanium (grade-2) surface by wire electro discharge machining (WEDM). J Mach Manuf Autom 2:1–5Google Scholar
  61. 61.
    Thesiya D, Patel S (2014) Experimental investigation of recast layer formation on the surface of Ti-6Al-4V titanium alloy during EDM process. Adv Manuf Sci Technol 38(4)Google Scholar
  62. 62.
    Pandey PC, Jilani ST (1986) Plasma channel growth and the resolidified layer in EDM. Precis Eng 8(2):104–110CrossRefGoogle Scholar
  63. 63.
    Sultan T, Kumar A, Gupta RD (2014) Material removal rate, electrode wear rate, and surface roughness evaluation in die sinking EDM with hollow tool through response surface methodology. Int J Manuf Eng 23Google Scholar
  64. 64.
    Bhattacharyya B, Gangopadhyay S, Sarkar BR (2007) Modelling and analysis of EDMED job surface integrity. J Mater Process Technol 89:169–177CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Janak B. Valaki
    • 1
    Email author
  • Pravin P. Rathod
    • 2
  • Ajay M. Sidpara
    • 3
  1. 1.Mechanical Engineering DepartmentGovernment Engineering CollegeBhavnagarIndia
  2. 2.Mechanical Engineering DepartmentGovernment Engineering CollegeBhujIndia
  3. 3.Mechanical Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations