Advertisement

Putting It All Together: The Language-Brain-Genes Loop

  • Ljiljana ProgovacEmail author
Chapter
Part of the SpringerBriefs in Linguistics book series (SBIL)

Abstract

Relying on the proposals and discussions in the first three chapters, in Sect. 4.2 I consider how a specific sexual selection scenario for the emergence of (simple) syntax would have affected and started to solidify the genetic foundation for language, addressing directly the language-genes dimension. Section 4.3 reports on the recent genetic developments and discoveries, of direct relevance to brain evolution, addressing the brain-gene dimension. Section 4.4 reports on the results of some specific neuroimaging experiments designed to test the role of the brain in the processing of simpler (fossil) vs. more complex syntax, engaging the language-brain dimension, in the light of evolution. The goal of this chapter is to make it clear that evolution (via selection) is a force which can bring these three dimensions together, and most probably the only force that can achieve that. Finally, with all this in mind, Sect. 4.5 returns to the question of whether other species, such as Neanderthals, may have had some form of language, and provides a fragment of the type of language that it would have been. Section 4.6 concludes this monograph.

Keywords

fMRI experiments FOXP2 gene Genetics of language Neanderthals and other hominins Neuroscience of language Sexual selection 

References

  1. Ansaldo, U., Lai, J., Jia, F., Siok, W. T., Tan, L. H., & Matthews, S. (2015). Neural basis for processing hidden complexity indexed by small and finite clauses in Mandarin Chinese. Journal of Neurolinguistics, 33, 118–127.CrossRefGoogle Scholar
  2. Ardila, A., Bernal, B., & Rosselli, M. (2016a). How localized are language brain areas? A review of Brodmann areas involvement in oral language. Archives of Clinical Neuropsychology, 31(1), 112–122.CrossRefGoogle Scholar
  3. Ardila, A., Bernal, B., & Rosselli, M. (2016b). Why Broca’s area damage does not result in classical Broca’s aphasia. Frontiers in Human Neuroscience, 10.  https://doi.org/10.3389/fnhum.2016.00249.
  4. Berwick, R., & Chomsky, N. (2016). Why only us? Language and evolution. Cambridge, MA and London, England: MIT Press.Google Scholar
  5. Bickerton, D. (2014). More than nature needs: Language, mind, and evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  6. Burling, R. (2005). The talking ape: How language evolved. Oxford: Oxford University Press.Google Scholar
  7. Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences, 31, 489–558.Google Scholar
  8. Citko, B. (2011). Symmetry in syntax: Merge, move, and labels. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Code, C. (2005). First in, last out? The evolution of aphasic lexical speech automatisms to agrammatism and the evolution of human communication. Interaction Studies, 6, 311–334.CrossRefGoogle Scholar
  10. Darwin, C. (1872). The expression of the emotions in man and animals. London: John Murray.CrossRefGoogle Scholar
  11. Darwin, C. M. A. (1874). The descent of man, and selection in relation to sex (New edn., revised and augmented). New York: Hurst and Company.Google Scholar
  12. Dawkins, R. (1996). The blind watchmaker: Why the evidence of evolution reveals a universe without design. New York: W.W. Norton and Company.Google Scholar
  13. Deacon, T. W. (1997). The symbolic species. New York: Norton.Google Scholar
  14. Deacon, T. W. (2003). Multilevel selection in a complex adaptive system: The problem of language origins. In W. H. Bruce & D. J. Depew (Eds.), Evolution and learning: The Baldwin Effect reconsidered (pp. 81–106). A Bradford Book. Cambridge, MA: The MIT Press.Google Scholar
  15. Dediu, D. (2015). An introduction to genetics for language scientists: Current concepts, methods, and findings. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin. Proceedings of the National Academy of Sciences of the USA, 104, 10944–10949.CrossRefGoogle Scholar
  17. Dediu, D., & Levinson, S. C. (2013). On the antiquity of language: The reinterpretation of Neandertal linguistic capacities and its consequences. Frontiers in Psychology, 4, 397.  https://doi.org/10.3389/fpsyg.2013.00397.CrossRefGoogle Scholar
  18. Diller, K.C., & Cann, R.L. (2013). Genetics, evolution, and the innateness of language. In R. Botha & M. Everaert (Eds.), The Evolutionary Emergence of Language (244-258). Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Draganski, B., Kherif, F., Klöppel, S., Cook, P. A., Alexander, D. C., Parker, G. J. M., et al. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. The Journal of Neuroscience, 28, 7143–7152.CrossRefGoogle Scholar
  20. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman Cooper.Google Scholar
  21. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano, T., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.CrossRefGoogle Scholar
  22. Enard, W., Gehre, S., Hammerschmidt, K., Hölter, S. M., Blass, T., & Somel, M., et al. (2009). A humanized version of FOXP2 affects cortico-basal ganglia circuits in mice. Cell 137, 961–967.Google Scholar
  23. Finlayson, C. (2009). The humans who went extinct: Why Neanderthals died out and we survived. Oxford: Oxford University Press.Google Scholar
  24. Fisher, S. E. (2017). Evolution of language: Lessons from the genome. Psychonomic Bulletin Review, 24, 34–40.CrossRefGoogle Scholar
  25. Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localization of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168–170.CrossRefGoogle Scholar
  26. Fitch, W. T. (2010). The evolution of language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Fitch, W. T. (2017). Empirical approaches to the study of language evolution. Psychonomic Bulletin Review, 24, 3–33.CrossRefGoogle Scholar
  28. Fitch, W. T., & Reby, D. (2001). The descended larynx is not uniquely human. Proceedings of the Royal Society of London B, 268, 1669–1675.  https://doi.org/10.1098/rspb.2001.1704.CrossRefGoogle Scholar
  29. Gibson, K. R. (1996). The ontogeny and evolution of the brain, cognition, and language. In A. Lock & C. R. Peters (Eds.), Handbook of human symbolic evolution (pp. 407–431). Oxford: Clarendon Press.Google Scholar
  30. Gopnik, M. (1990). Feature-blind grammar and dysphasia. Nature, 344, 715.CrossRefGoogle Scholar
  31. Gopnik, M., & Crago, M. B. (1991). Familial aggregation of a developmental language disorder. Cognition, 39, 1–50.CrossRefGoogle Scholar
  32. Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3, 115–151.CrossRefGoogle Scholar
  33. Harris, E. E. (2015). Ancestors in our genome: The new science of human evolution. Oxford: Oxford University Press.Google Scholar
  34. Hillert, D. (2014). The nature of language: Evolution, paradigms and circuits. New York: Springer.CrossRefGoogle Scholar
  35. Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 88–96.CrossRefGoogle Scholar
  36. Jay, T. (1980). Sex roles and dirty word usage: A review of the literature and a reply to Haas. Psychological Bulletin, 88, 614–621.CrossRefGoogle Scholar
  37. Kos, M., van den Brink, D., Snijders, T. M., Rijpkema, M., Franke, B., Fernandez, G., et al. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PLoS ONE, 7, e46995.CrossRefGoogle Scholar
  38. Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R., Burbano, H., et al. (2007). The derived FOXP2 variant of modern humans was shared with Neanderthals. Current Biology, 17(1–5), 53–60.Google Scholar
  39. Lieberman, P. (2000). Human language and our reptilian brain: The subcortical bases of speech, syntax, and thought. Cambridge, MA: Harvard University Press.Google Scholar
  40. Lieberman, P. (2009). FOXP2 and human cognition. Cell, 137, 801–802.CrossRefGoogle Scholar
  41. Liégeois, F., Baldeweg, T., Connelly, A., Gadian, D. G., Mishkin, M., & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6(11), 1230–1237.CrossRefGoogle Scholar
  42. Little, H. (2016). Review of L. Progovac’s (2015) Evolutionary Syntax, Oxford University Press. Linguist List, April 7, 2016. Reviews editor: Helen Aristar-Dry.Google Scholar
  43. McBrearty, S. (2007). Down with the revolution. In P. Mellars, K. Boyle, O. Bar-Yosef, & C. Stringer (Eds.), Rethinking the Human Revolution: New Behavioral and Biological Perspectives on the Origin and Dispersal of Modern Humans (pp. 133–151). University of Cambridge: McDonald Institute for Archeological Research.Google Scholar
  44. Miller, G. A. (2000). The mating mind: How sexual choice shaped the evolution of human nature. London: William Heinemann.Google Scholar
  45. Mohr, M. (2013). Holy shit: A brief history of swearing. Oxford: Oxford University Press.Google Scholar
  46. Mortensen, D. (2014). Learning phonological ordering generalizations for Hmong elaborate expressions. Paper presented at the 2014 Linguistic Society of America (LSA) Meeting in Minneapolis.Google Scholar
  47. Newbury, D. F., & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68, 309–320.CrossRefGoogle Scholar
  48. Piattelli-Palmarini, M., & Uriagereka, J. (2011). A geneticist’s dream, a linguist’s nightmare: The case of FOXP2 gene. In A. M. Di Sciullo & C. Boeckx (Eds.), The biolinguistic enterprise: New perspectives on the evolution and nature of the human language faculty (pp. 100–125). Oxford: Oxford University Press.Google Scholar
  49. Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13, 707–784.CrossRefGoogle Scholar
  50. Progovac, L. (2009). Sex and syntax: Subjacency revisited. Biolinguistics, 3(2–3), 305–336.Google Scholar
  51. Progovac, L. (2010). Syntax: Its evolution and its representation in the brain. Biolinguistics, 4(2-3), 233–254.Google Scholar
  52. Progovac, L. (2015). Evolutionary Syntax. Oxford Studies in the Evolution of Language. Oxford: Oxford University Press.Google Scholar
  53. Progovac, L. (2016). A gradualist scenario for language evolution: Precise linguistic reconstruction of early human (and Neandertal) grammars. Frontiers in Psychology, 7, 1714.  https://doi.org/10.3389/fpsyg.2016.01714.CrossRefGoogle Scholar
  54. Progovac, L., Rakhlin, N., Angell, W., Liddane, R., Tang, L., & Ofen, N. (2018). Diversity of grammars and their diverging evolutionary and processing paths: Evidence from Functional MRI study of Serbian. Frontiers in Psychology. Special Issue: Languages as Adaptive Systems, E. Aboh & U. Ansaldo (Eds.).  https://doi.org/10.3389/fpsyg.2018.00278.
  55. Rakhlin, N., & Grigorenko, E. (2014). (A)typical language development: Genetic and environmental influences. In R. Bahr & E. Silliman (Eds.), Handbook of communication disorders (pp. 11–21). Routledge.Google Scholar
  56. Stone, L., & Lurquin, P. F. (2007). Genes, culture, and human evolution: A synthesis. Blackwell Publishing.Google Scholar
  57. Stringer, C. (2007). The origin and dispersal of Homo sapiens: Our current state of knowledge. In P. Mellars, K. Boyle, O. Bar-Yosef, & C. Stringer (Eds.), Rethinking the human revolution: New behavioral and biological perspectives on the origin and dispersal of modern humans (pp. 15–20). University of Cambridge: McDonald Institute for Archaeological Research.Google Scholar
  58. Ullman, M. T. (2006). Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex, 42, 480–485.CrossRefGoogle Scholar
  59. Vargha-Khadem, F., Gadian, D. G., Copp, A., & Mishkin, M. (2005). FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience, 6, 131–138.CrossRefGoogle Scholar
  60. Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., et al. (2007). High-throughput analysis promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. The American Journal of Human Genetics, 81, 1232–1250.CrossRefGoogle Scholar
  61. Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., et al. (2008). A functional genetic link between distinct developmental language disorders. The New England Journal of Medicine 359, 2337–2345.  https://doi.org/10.1056/nejmoa0802828.CrossRefGoogle Scholar
  62. Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A map of recent positive selection in the human genome. PLOS Biology, 4(3), e72.  https://doi.org/10.1371/journal.pbio.0040072.CrossRefGoogle Scholar
  63. Weekley, E. (1916). Surnames. New York: E.P. Dutton & Co.Google Scholar
  64. Whalley, H. C., O’Connell, G., Sussmann, J. E., Peel, A., Stanfield, A. C., Hayiou‐Thomas, M. E. (2011). Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics B, 156, 941–948.CrossRefGoogle Scholar
  65. Whitehouse, A. J. O., Bishop, D. V. M., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes Brain Behavior, 10, 451–456.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Linguistics DepartmentWayne State UniversityDetroitUSA

Personalised recommendations