Advertisement

Applying Statistical Methods with Imprecise Data to Quality Control in Cheese Manufacturing

  • Ana Belén Ramos-Guajardo
  • Ángela Blanco-Fernández
  • Gil González-Rodríguez
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 183)

Abstract

Sensory analysis entails subjective valuations provided by qualified experts which in most of the cases are given by means of a real value. However personal valuations usually present an uncertainty in their meaning which is difficult to capture by using a unique value. In this work some statistical techniques to deal with such kind of information are presented. The methodology is illustrated through a case-study, where some tasters have been proposed to use trapezoidal fuzzy numbers to express their perceptions regarding the quality of the so-called Gamonedo blue cheese. In order to establish an agreement between the tasters a weighted summary measure of the information collected is described. This will lead to assign a weight to each expert depending on the influence they have when the weighted mean is computed. An example of the real-life application is also provided.

Keywords

Fuzzy sets Subjective valuations Quality control of cheese Weighted central tendency measure Statistical techniques 

Notes

Acknowledgements

We would like to thank the grant “Estadistica robusta y flexible para datos intervalares, de conjunto y de conjunto difuso: localización, variabilidad y regresión lineal” (MTM2013-44212-P, Spanish Ministry of Economy and Competitiveness) for its financial support.

References

  1. 1.
    Albaum, G.: The Likert scale revisited: an alternate version. J. Mark. Res. Soc. 39, 331–348 (1997)Google Scholar
  2. 2.
    Amerine, M.A., Pangborn, R.M., Roessler, E.B.: Principles of Sensory Evaluation of Food. Academic Press, New York (1965)Google Scholar
  3. 3.
    Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Carifio, J., Perla, R.J.: Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotees. J. Soc. Sci. 3(3), 106–116 (2007)Google Scholar
  5. 5.
    Colubi, A., Gonzalez-Rodriguez, G.: Fuzziness in data analysis: towards accuracy and robustness. Fuzzy Sets Syst. 281, 260–271 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Davison, V., Ryks, J., Chu, T.: Fuzzy models to predict consumer ratings for biscuits based on digital image features. IEEE Trans. Fuzzy Syst. 9, 62–67 (2001)CrossRefGoogle Scholar
  7. 7.
    Denoeux, T., Masson, M.H.: Principal component anaysis of fuzzy data using autoassociative neural networks. IEEE Trans. Fuzzy Syst. 12(3), 336–349 (2004)CrossRefGoogle Scholar
  8. 8.
    Di Cagno, R., Banks, J., Sheehanc, L., Fox, P.F., Brechany, E.Y., Corsetti, A., Gobbetti, M.: Comparison of the microbiological, compositional, biochemical, volatile profile and sensory characteristics of three Italian PDO ewes’ milk cheeses. Int. Diary J. 13(12), 961–972 (2003)CrossRefGoogle Scholar
  9. 9.
    Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliab. Comput. 10(4), 273–297 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    D’Urso, P., Giordani, P.: A weighted fuzzy c-means clustering model for fuzzy data. Comput. Stat. Data Anal. 50, 1496–1523 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    D’Urso, P., Massari, R., Santoro, A.: Robuts fuzzy regression analysis. Inf. Sci. 181, 4154–4174 (2011)zbMATHCrossRefGoogle Scholar
  12. 12.
    Fréchet, M.: Les éléments aléatoires de nature quelconque dan un espace distancié. Annales de l’Institut Henri Poincare 10, 215–310 (1948)zbMATHGoogle Scholar
  13. 13.
    Gil, M.A., Gonzalez-Rodriguez, G.: Fuzzy vs. Likert scales in statistics. In: Trillas, E., Bonissone, P.P., Magdalena, L., Kacprzyk, J. (eds.) Combining Experimentation and Theory. A Hommage to Abe Mamdani, Studies in Fuzziness and Soft Computing, vol. 271, pp. 407–420. Springer (2012)Google Scholar
  14. 14.
    Gonzalez de Llano, D., Ramos, M., Rodríguez, A., Montilla, A., Juárez, M.: Microbiological and physicochemical characteristics of gamonedo blue cheese during ripening. Int. Dairy J. 2(2), 121–135 (1992)CrossRefGoogle Scholar
  15. 15.
    González-Rodríguez, G., Montenegro, M., Colubi, A., Gil, M.A.: Bootstrap techniques and fuzzy random variables: synergy in hypothesis testing with fuzzy data. Fuzzy Sets Syst. 157, 2608–2613 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    González-Rodríguez, G., Colubi, A., Gil, M.A.: Fuzzy data treated as functional data: a one-way ANOVA test approach. Comput. Stat. Data Anal. 56, 943–955 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Grzegorzewski, P.: Trapezoidal approximations of fuzzy numbers preserving the expected interval-algorithms and properties. Fuzzy Sets Syst. 159(11), 1354–1364 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jamieson, S.: Likert scales: how to (ab)use them. Med. Educ. 38(12), 1217–1218 (2004)CrossRefGoogle Scholar
  19. 19.
    Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 69, 383–393 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Huber, P.J.: Robust Statistics. Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  21. 21.
    Körner, R.: An asymptotic \(\alpha \)-test for the expectation of random fuzzy variables. J. Stat. Plan. Inference 83, 331–346 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Körner, R., Näther, W.: On the variance of fuzzy random variables. In: Bertoluzza, C., Gil, M.A., Ralescu, D.A. (eds.) Statistical Modelling, Analysis and Management of Fuzzy Data, pp. 22–39. Physica-Verlag, Heidelberg (2002)Google Scholar
  23. 23.
    Lalla, M., Facchinetti, G., Mastroleo, G.: Ordinal scales and fuzzy set systems to measure agreement: an application to the evaluation of teaching activity. Qual. Quant. 38, 577–601 (2004)CrossRefGoogle Scholar
  24. 24.
    Lazim, M.A., Osman, M.T.A.: Measuring teachers’ beliefs about mathematics: a fuzzy set approach. Int. J. Soc. Sci. 4(1), 39–43 (2009)Google Scholar
  25. 25.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 1–55 (1932)Google Scholar
  26. 26.
    Lubiano, M.A., Alonso, C., Gil, M.A.: Statistical inferences on the S-mean squared dispersion of a fuzzy random variable. In: Proceedings of the Joint EUROFUSE-SIC99, Budapest, pp. 532-537 (1999)Google Scholar
  27. 27.
    Maronna, R.A., Martin, R.D., Yohai, V.J.: Robust Statistics: Theory and Methods. Wiley, New York (2006)zbMATHCrossRefGoogle Scholar
  28. 28.
    Martínez, L., Espinilla, M., Liu, J., Pérez, L.G., Sánchez, P.J.: An evaluation model with unbalanced linguistic information: applied to olive oil sensory evaluation. J. Mult.-Valued Logic Soft Comput. 15(2–3), 229–251 (2009)Google Scholar
  29. 29.
    Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1986)zbMATHGoogle Scholar
  30. 30.
    Montenegro, M., Colubi, A., Casals, M.R., Gil, M.A.: Asymptotic and Bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59, 31–49 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Pérez Elortondo, F.J., Ojeda, M., Albisua, M., Salmerón, J., Etayo, I., Molina, M.: Food quality certification: an approach for the development of accredited sensory evaluation methods. Food Qual. Prefer. 18(2), 425–439 (2007)CrossRefGoogle Scholar
  32. 32.
    Perrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., Trystram, G.: Fuzzy concepts applied to food product quality control: a review. Fuzzy Sets Syst. 157, 1145–1154 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Ramos-Guajardo, A.B., Colubi, A., González-Rodríguez, G., Gil, M.A.: One-sample tests for a generalized Fréchet variance of a fuzzy random variable. Metrika 71(2), 185–202 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Ramos-Guajardo, A.B., Lubiano, M.A.: K-sample tests for equality of variances of random fuzzy sets. Comput. Stat. Data Anal. 56(4), 956–966 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Rodriguez, A., Alonso, L., Gonzalez, M.D., Gonzalez, C., Mayo, B.: Quesos de asturias. Alimentaria 2000, 111–124 (2000)Google Scholar
  37. 37.
    de la Rosa de Saa, S., Gil, M.A., Gonzalez-Rodriguez, G., López, M.T., Lubiano, M.A.: Fuzzy rating scale-based questionnaires and their statistical analysis. IEEE Trans. Fuzzy Syst. 23(1), 111–126 (2015)Google Scholar
  38. 38.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Sinova, B., Gil, M.A., Colubi, A., Van Aelst, S.: The median of a random fuzzy number. The 1-norm distance. Fuzzy Sets Syst. 200, 99–115 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)zbMATHCrossRefGoogle Scholar
  41. 41.
    Tan, J., Gao, X., Gerrard, D.E.: Application of fuzzy sets and neural networks in sensory analysis. J. Sensory Stud. 14, 119–138 (1999)CrossRefGoogle Scholar
  42. 42.
    Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Inf. Sci. 179, 3964–3972 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Belén Ramos-Guajardo
    • 1
  • Ángela Blanco-Fernández
    • 1
  • Gil González-Rodríguez
    • 1
  1. 1.Department of Statistics, Operational Research and Didactics of MathematicsUniversity of OviedoOviedoSpain

Personalised recommendations