Advertisement

Intraoperative Identification and Location of Facial Nerve: Type of Facial Nerve Displacement—How to Use Monopolar Stimulator

  • Luciano MastronardiEmail author
  • Alberto Campione
  • Ali Zomorodi
  • Ettore Di Scipio
  • Antonio Adornetti
  • Takanori Fukushima
Chapter

Abstract

Intraoperative facial nerve monitoring (IOFNM) is a neurophysiological method whose main purpose is to inform the surgical team of the actual neural function—and, indirectly, of the position—of the facial nerve (N VII) so that the operative strategy can be consequently adjusted to avoid neural damage. The most commonly used—and therefore defined as “standard”—IOFNM techniques are direct electrical stimulation (DES) and free-running electromyography (EMG). DES allows for proper tracing of the course of N VII; the types of displacement reported have been correlated to tumor size and capsule adhesiveness in diverse studies. Functional changes in the activity of N VII—as detected by DES and EMG—also have a role in assessing postoperative functional prognosis. The technique of facial motor evoked potentials (FMEPs) is the most promising and latest frontier method in IOFNM as it surpasses most of the disadvantages of standard techniques.

Keywords

Vestibular schwannoma/facial nerve Vestibular schwannoma/neurophysiological monitoring Vestibular schwannoma/direct electrical stimulation Vestibular schwannoma/electromyography Vestibular schwannoma/facial motor evoked potentials 

References

  1. 1.
    Vivas EX, Carlson ML, Neff BA, Shepard NT, McCracken DJ, Sweeney AD, et al. Congress of neurological surgeons systematic review and evidence-based guidelines on intraoperative cranial nerve monitoring in vestibular schwannoma surgery. Neurosurgery. 2018;82(2):E44–E6.CrossRefGoogle Scholar
  2. 2.
    Amano M, Kohno M, Nagata O, Taniguchi M, Sora S, Sato H. Intraoperative continuous monitoring of evoked facial nerve electromyograms in acoustic neuroma surgery. Acta Neurochir. 2011;153(5):1059–67; discussion 67.CrossRefGoogle Scholar
  3. 3.
    Duarte-Costa S, Vaz R, Pinto D, Silveira F, Cerejo A. Predictive value of intraoperative neurophysiologic monitoring in assessing long-term facial function in grade IV vestibular schwannoma removal. Acta Neurochir. 2015;157(11):1991–7; discussion 8.CrossRefGoogle Scholar
  4. 4.
    Liu SW, Jiang W, Zhang HQ, Li XP, Wan XY, Emmanuel B, et al. Intraoperative neuromonitoring for removal of large vestibular schwannoma: facial nerve outcome and predictive factors. Clin Neurol Neurosurg. 2015;133:83–9.CrossRefGoogle Scholar
  5. 5.
    Mastronardi L, Cacciotti G, Roperto R. Intracanalicular vestibular schwannomas presenting with facial nerve paralysis. Acta Neurochir. 2018;160(4):689–93.CrossRefGoogle Scholar
  6. 6.
    Acioly MA, Liebsch M, de Aguiar PH, Tatagiba M. Facial nerve monitoring during cerebellopontine angle and skull base tumor surgery: a systematic review from description to current success on function prediction. World Neurosurg. 2013;80(6):e271–300.CrossRefGoogle Scholar
  7. 7.
    Nejo T, Kohno M, Nagata O, Sora S, Sato H. Dorsal displacement of the facial nerve in acoustic neuroma surgery: clinical features and surgical outcomes of 21 consecutive dorsal pattern cases. Neurosurg Rev. 2016;39(2):277–88; discussion 88.CrossRefGoogle Scholar
  8. 8.
    Sameshima T, Morita A, Tanikawa R, Fukushima T, Friedman AH, Zenga F, et al. Evaluation of variation in the course of the facial nerve, nerve adhesion to tumors, and postoperative facial palsy in acoustic neuroma. J Neurol Surg B Skull Base. 2013;74(1):39–43.PubMedGoogle Scholar
  9. 9.
    Mastronardi L, Cacciotti G, Roperto R, Di Scipio E, Tonelli MP, Carpineta E. Position and course of facial nerve and postoperative facial nerve results in vestibular schwannoma microsurgery. World Neurosurg. 2016;94:174–80.CrossRefGoogle Scholar
  10. 10.
    Bozorg Grayeli A, Kalamarides M, Fraysse B, Deguine O, Favre G, Martin C, et al. Comparison between intraoperative observations and electromyographic monitoring data for facial nerve outcome after vestibular schwannoma surgery. Acta Otolaryngol. 2005;125(10):1069–74.CrossRefGoogle Scholar
  11. 11.
    Romstöck J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg. 2000;93(4):586–93.CrossRefGoogle Scholar
  12. 12.
    Prell J, Rampp S, Romstöck J, Fahlbusch R, Strauss C. Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosurg. 2007;106(5):826–32.CrossRefGoogle Scholar
  13. 13.
    Matthies C, Raslan F, Schweitzer T, Hagen R, Roosen K, Reiners K. Facial motor evoked potentials in cerebellopontine angle surgery: technique, pitfalls and predictive value. Clin Neurol Neurosurg. 2011;113(10):872–9.CrossRefGoogle Scholar
  14. 14.
    Acioly MA, de Aguiar PH, Tatagiba M. Continuous monitoring of evoked facial nerve electromyograms: a new device for an old concept. Acta Neurochir. 2011;153(11):2271–2; author reply 3–4.CrossRefGoogle Scholar
  15. 15.
    Acioly MA, Gharabaghi A, Liebsch M, Carvalho CH, Aguiar PH, Tatagiba M. Quantitative parameters of facial motor evoked potential during vestibular schwannoma surgery predict postoperative facial nerve function. Acta Neurochir. 2011;153(6):1169–79.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luciano Mastronardi
    • 1
    Email author
  • Alberto Campione
    • 1
  • Ali Zomorodi
    • 2
  • Ettore Di Scipio
    • 3
  • Antonio Adornetti
    • 4
  • Takanori Fukushima
    • 2
  1. 1.Department of NeurosurgerySan Filippo Neri Hospital—ASLRoma1RomeItaly
  2. 2.Division of Neurosurgery, Duke University Medical CenterCarolina Neuroscience InstituteRaleighUSA
  3. 3.Department of Neurology and NeurophysiologySan Filippo Neri Hospital—ASLRoma1RomeItaly
  4. 4.Department of NeurosurgerySan Filippo Neri Hospital - ASLRoma1RomaItaly

Personalised recommendations