Advertisement

Usefulness of Laser and Ultrasound Aspirator

  • Luciano MastronardiEmail author
  • Alberto Campione
  • Ali Zomorodi
  • Raffaelino Roperto
  • Guglielmo Cacciotti
  • Takanori Fukushima
Chapter

Abstract

The rationale for laser use in tumor resection is both to allow for “no-touch” cutting and for tissue debulking, with hemostatic benefit. Laser surgery, in general, has shown various advantages, such as reduction of mechanical trauma and intraoperative bleeding. Three types of laser have been successfully used in vestibular schwannoma surgery, potassium titanyl phosphate (KTP-532), CO2, and the novel 2μ-thulium lasers, which has been deemed safe especially in “difficult” conditions (e.g., highly vascularized and hard tumors).

The ultrasound aspirator (USA) is used for tissue fragmentation; modern devices are supposed to leave the neurovascular structures around the surgical site largely untouched. The use of the USA for meatal bone removal has recently been introduced in routine skull base surgery as an alternative to the neurotologic drill. Care must be taken in controlling suction, irrigation, and power settings to obtain ideal results and avoid any damage to surrounding dura and soft tissues; the senior authors of this book suggest the configuration Power:50, Suction:5, Irrigation:5 for debulking and increasing power settings for internal auditory canal unroofing.

Keywords

Vestibular schwannoma/laser Vestibular schwannoma/ultrasound aspirator Vestibular schwannoma/microsurgical technique Vestibular schwannoma/instrumentation 

References

  1. 1.
    Gardner G, Robertson JH, Clark WC, Bellott AL, Hamm CW. Acoustic tumor management—combined approach surgery with CO2 laser. Am J Otol. 1983;5(2):87–108.PubMedGoogle Scholar
  2. 2.
    Ryan RW, Spetzler RF, Preul MC. Aura of technology and the cutting edge: a history of lasers in neurosurgery. Neurosurg Focus. 2009;27(3):E6.CrossRefGoogle Scholar
  3. 3.
    Tew JM, Tobler WD. Present status of lasers in neurosurgery. Adv Tech Stand Neurosurg. 1986;13:3–36.CrossRefGoogle Scholar
  4. 4.
    Schwartz MS, Lekovic GP. Use of a flexible hollow-core carbon dioxide laser for microsurgical resection of vestibular schwannomas. Neurosurg Focus. 2018;44(3):E6.CrossRefGoogle Scholar
  5. 5.
    Mastronardi L, Cacciotti G, Roperto R, Tonelli MP, Carpineta E, How I. Do it: the role of flexible hand-held 2μ-thulium laser fiber in microsurgical removal of acoustic neuromas. J Neurol Surg B Skull Base. 2017;78(4):301–7.CrossRefGoogle Scholar
  6. 6.
    Mastronardi L, Cacciotti G, Scipio ED, Parziale G, Roperto R, Tonelli MP, et al. Safety and usefulness of flexible hand-held laser fibers in microsurgical removal of acoustic neuromas (vestibular schwannomas). Clin Neurol Neurosurg. 2016;145:35–40.CrossRefGoogle Scholar
  7. 7.
    Scheich M, Ginzkey C, Harnisch W, Ehrmann D, Shehata-Dieler W, Hagen R. Use of flexible CO2 laser fiber in microsurgery for vestibular schwannoma via the middle cranial fossa approach. Eur Arch Otorhinolaryngol. 2012;269(5):1417–23.CrossRefGoogle Scholar
  8. 8.
    Hart SD, Maskaly GR, Temelkuran B, Prideaux PH, Joannopoulos JD, Fink Y. External reflection from omnidirectional dielectric mirror fibers. Science. 2002;296(5567):510–3.CrossRefGoogle Scholar
  9. 9.
    Ibanescu M, Fink Y, Fan S, Thomas EL, Joannopoulos JD. An all-dielectric coaxial waveguide. Science. 2000;289(5478):415–9.CrossRefGoogle Scholar
  10. 10.
    Temelkuran B, Hart SD, Benoit G, Joannopoulos JD, Fink Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature. 2002;420(6916):650–3.CrossRefGoogle Scholar
  11. 11.
    Nissen AJ, Sikand A, Welsh JE, Curto FS. Use of the KTP-532 laser in acoustic neuroma surgery. Laryngoscope. 1997;107(1):118–21.CrossRefGoogle Scholar
  12. 12.
    House JW, Brackmann DE. Facial nerve grading system. Otolaryngol Head Neck Surg. 1985;93(2):146–7.CrossRefGoogle Scholar
  13. 13.
    Stellar S, Polanyi TG, Bredemeier HC. Experimental studies with the carbon dioxide laser as a neurosurgical instrument. Med Biol Eng. 1970;8(6):549–58.CrossRefGoogle Scholar
  14. 14.
    Cerullo LJ, Mkrdichian EH. Acoustic nerve tumor surgery before and since the laser: comparison of results. Lasers Surg Med. 1987;7(3):224–8.CrossRefGoogle Scholar
  15. 15.
    Ryan RW, Wolf T, Spetzler RF, Coons SW, Fink Y, Preul MC. Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions. J Neurosurg. 2010;112(2):434–43.CrossRefGoogle Scholar
  16. 16.
    Eiras J, Alberdi J, Gomez J. Laser CO2 in the surgery of acoustic neuroma. Neurochirurgie. 1993;39(1):16–21; discussion 21–3.PubMedGoogle Scholar
  17. 17.
    Committee on Hearing and Equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma (vestibular schwannoma). American Academy of Otolaryngology-Head and Neck Surgery Foundation, INC. Otolaryngol Head Neck Surg. 1995;113(3):179–80.Google Scholar
  18. 18.
    Gardner G, Robertson JH. Hearing preservation in unilateral acoustic neuroma surgery. Ann Otol Rhinol Laryngol. 1988;97(1):55–66.CrossRefGoogle Scholar
  19. 19.
    Ben Ammar M, Piccirillo E, Topsakal V, Taibah A, Sanna M. Surgical results and technical refinements in translabyrinthine excision of vestibular schwannomas: the Gruppo Otologico experience. Neurosurgery. 2012;70(6):1481–91; discussion 91.CrossRefGoogle Scholar
  20. 20.
    Nonaka Y, Fukushima T, Watanabe K, Friedman AH, Sampson JH, Mcelveen JT, et al. Contemporary surgical management of vestibular schwannomas: analysis of complications and lessons learned over the past decade. Neurosurgery. 2013;72(2 Suppl Operative):ons103–15; discussion ons15.Google Scholar
  21. 21.
    Samii M, Gerganov V, Samii A. Improved preservation of hearing and facial nerve function in vestibular schwannoma surgery via the retrosigmoid approach in a series of 200 patients. J Neurosurg. 2006;105(4):527–35.CrossRefGoogle Scholar
  22. 22.
    Passacantilli E, Antonelli M, D’Amico A, Delfinis CP, Anichini G, Lenzi J, et al. Neurosurgical applications of the 2-μm thulium laser: histological evaluation of meningiomas in comparison to bipolar forceps and an ultrasonic aspirator. Photomed Laser Surg. 2012;30(5):286–92.CrossRefGoogle Scholar
  23. 23.
    Wanibuchi M, Fukushima T, Friedman AH, Watanabe K, Akiyama Y, Mikami T, et al. Hearing preservation surgery for vestibular schwannomas via the retrosigmoid transmeatal approach: surgical tips. Neurosurg Rev. 2014;37(3):431–44; discussion 44.CrossRefGoogle Scholar
  24. 24.
    Flamm ES, Ransohoff J, Wuchinich D, Broadwin A. Preliminary experience with ultrasonic aspiration in neurosurgery. Neurosurgery. 1978;2:240–5.CrossRefGoogle Scholar
  25. 25.
    Sawamura Y, Fukushima T, Terasaka S, Sugai T. Development of a handpiece and probes for a microsurgical ultrasonic aspirator: instrumentation and application. Neurosurgery. 1999;45(5):1192–6; discussion 7.CrossRefGoogle Scholar
  26. 26.
    Ridderheim PA, von Essen C, Zetterlund B. Indirect injury to cranial nerves after surgery with Cavitron ultrasonic surgical aspirator (CUSA). Case report. Acta Neurochir. 1987;89(1–2):84–6.CrossRefGoogle Scholar
  27. 27.
    Epstein F. The Cavitron ultrasonic aspirator in tumor surgery. Clin Neurosurg. 1983;31:497–505.CrossRefGoogle Scholar
  28. 28.
    Kanzaki J, Inoue Y, Kurashima K, Shiobara R. Use of the ultrasonically activated scalpel in acoustic neuroma surgery: preliminary report. Skull Base Surg. 2000;10(2):71–4.CrossRefGoogle Scholar
  29. 29.
    Golub JS, Weber JD, Leach JL, Pottschmidt NR, Zuccarello M, Pensak ML, et al. Feasibility of the ultrasonic bone aspirator in retrosigmoid vestibular schwannoma removal. Otolaryngol Head Neck Surg. 2015;153(3):427–32.CrossRefGoogle Scholar
  30. 30.
    Weber JD, Samy RN, Nahata A, Zuccarello M, Pensak ML, Golub JS. Reduction of bone dust with ultrasonic bone aspiration: implications for retrosigmoid vestibular schwannoma removal. Otolaryngol Head Neck Surg. 2015;152(6):1102–7.CrossRefGoogle Scholar
  31. 31.
    Modest MC, Carlson ML, Link MJ, Driscoll CL. Ultrasonic bone aspirator (Sonopet) for meatal bone removal during retrosigmoid craniotomy for vestibular schwannoma. Laryngoscope. 2017;127(4):805–8.CrossRefGoogle Scholar
  32. 32.
    Ansari SF, Terry C, Cohen-Gadol AA. Surgery for vestibular schwannomas: a systematic review of complications by approach. Neurosurg Focus. 2012;33(3):E14.CrossRefGoogle Scholar
  33. 33.
    Teo MK, Eljamel MS. Role of craniotomy repair in reducing postoperative headaches after a retrosigmoid approach. Neurosurgery. 2010;67(5):1286–91; discussion 91–2.CrossRefGoogle Scholar
  34. 34.
    Ito T, Mochizuki H, Watanabe T, Kubota T, Furukawa T, Koike T, et al. Safety of ultrasonic bone curette in ear surgery by measuring skull bone vibrations. Otol Neurotol. 2014;35(4):e135–9.CrossRefGoogle Scholar
  35. 35.
    Levo H, Pyykkö I, Blomstedt G. Postoperative headache after surgery for vestibular schwannoma. Ann Otol Rhinol Laryngol. 2000;109(9):853–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luciano Mastronardi
    • 1
    Email author
  • Alberto Campione
    • 1
  • Ali Zomorodi
    • 2
  • Raffaelino Roperto
    • 1
  • Guglielmo Cacciotti
    • 1
  • Takanori Fukushima
    • 2
  1. 1.Department of NeurosurgerySan Filippo Neri Hospital—ASLRoma1RomeItaly
  2. 2.Division of Neurosurgery, Duke University Medical CenterCarolina Neuroscience InstituteRaleighUSA

Personalised recommendations