Advertisement

Properties of Composites

  • Merin Sara Thomas
  • Rekha Rose Koshy
  • Siji K. Mary
  • Sabu Thomas
  • Laly A. Pothan
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The main disadvantages of the biodegradable polymers towards a wide range of applications are their poor mechanical and thermal resistance as well as barrier properties. It can be overcome by the use of biopolymers as the fillers, which enhance the biodegradability also. This chapter outlines the improvement in various properties achieved by composites after reinforcement.

References

  1. Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP-titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539.  https://doi.org/10.1016/j.carbpol.2013.03.034CrossRefPubMedGoogle Scholar
  2. Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510.  https://doi.org/10.3144/expresspolymlett.2008.60CrossRefGoogle Scholar
  3. Celis R, Adelino MA, Hermosín MC, Cornejo J (2012) Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209:67–76.  https://doi.org/10.1016/j.jhazmat.2011.12.074CrossRefGoogle Scholar
  4. Chang PR, Jian R, Yu J, Ma X (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:421–426.  https://doi.org/10.1016/j.carbpol.2009.11.041CrossRefGoogle Scholar
  5. Chen C, Li D, Deng Q, Zheng B (2012) Optically transparent biocomposites: polymethylmethacrylate reinforced with high-performance chitin nanofibers. BioResources 7:5960–5971.  https://doi.org/10.15376/biores.7.4.5960-5971CrossRefGoogle Scholar
  6. De Silva RT, Mantilaka MM, Ratnayake SP, Amaratunga GA, de Silva KN (2017) Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohyd Polym 157:739–747.  https://doi.org/10.1016/j.carbpol.2016.10.038CrossRefGoogle Scholar
  7. Gironès J, López JP, Mutjé P, Carvalho AJFD, Curvelo AADS, Vilaseca F (2012) Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos Sci Technol 72:858–863.  https://doi.org/10.1016/j.compscitech.2012.02.019CrossRefGoogle Scholar
  8. Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194.  https://doi.org/10.1016/j.jhazmat.2016.06.028CrossRefPubMedGoogle Scholar
  9. Harfiz M, Salleh E, Nur S et al (2014) Starch based active packaging film reinforced with empty fruit bunch (EFB) cellulose nanofiber. Procedia Chem 9:23–33.  https://doi.org/10.1016/j.proche.2014.05.004CrossRefGoogle Scholar
  10. Herrera N, Salaberria AM, Mathew AP, Oksman K (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos A Appl Sci Manuf 83:89–97.  https://doi.org/10.1016/j.compositesa.2015.05.024CrossRefGoogle Scholar
  11. Hu Q, Li B, Wang M, Shen J (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25:779–785.  https://doi.org/10.1016/S0142-9612(03)00582-9CrossRefPubMedGoogle Scholar
  12. Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y, Lu A, Zhang L (2015) Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromol 16:3499–3507.  https://doi.org/10.1021/acs.biomac.5b00928CrossRefGoogle Scholar
  13. Jayakumar R, Ramachandran R, Divyarani VV, Chennazhi KP, Tamura H, Nair SV (2011a) Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications. Int J Biol Macromol 48:336–344.  https://doi.org/10.1016/j.ijbiomac.2010.12.010CrossRefPubMedGoogle Scholar
  14. Jayakumar R, Ramachandran R, Sudheesh Kumar PT, Divyarani VV, Chennazhi KP, Tamura H, Nair SV (2011b) Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. Int J Biol Macromol 49:274–280.  https://doi.org/10.1016/j.ijbiomac.2011.04.020CrossRefPubMedGoogle Scholar
  15. Jin J, Hassanzadeh P, Perotto G, Sun W, Brenckle MA, Kaplan D, Omenetto FG, Rolandi M (2013) A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix. Adv Mater 25:4482–4487.  https://doi.org/10.1002/adma.201301429CrossRefPubMedGoogle Scholar
  16. Junkasem J, Rujiravanit R, Supaphol P (2006) Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology 17:4519–4528.  https://doi.org/10.1088/0957-4484/17/17/039CrossRefGoogle Scholar
  17. Kadokawa J, Takegawa A, Mine S, Prasad K (2011) Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly(vinyl alcohol). Carbohydr Polym 84:1408–1412.  https://doi.org/10.1016/j.carbpol.2011.01.049CrossRefGoogle Scholar
  18. Kumar PTS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813.  https://doi.org/10.1007/s10856-009-3877-zCrossRefGoogle Scholar
  19. Kumar PT, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Rs Jayakumar (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629.  https://doi.org/10.1021/am300292vCrossRefPubMedGoogle Scholar
  20. Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym 84:631–637.  https://doi.org/10.1016/j.carbpol.2010.12.041CrossRefGoogle Scholar
  21. Lopez O, Garcia M, Villar M, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT - Food Sci Technol 57:106–115.  https://doi.org/10.1016/j.lwt.2014.01.024CrossRefGoogle Scholar
  22. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromol 5:1046–1051.  https://doi.org/10.1021/bm034516xCrossRefGoogle Scholar
  23. Marroquin JB, Rhee KY, Park SJ (2013) Chitosan nanocomposite films: enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr Polym 92:1783–1791.  https://doi.org/10.1016/j.carbpol.2012.11.042CrossRefPubMedGoogle Scholar
  24. Nascimento P,  Marim R,  Carvalho G,  Mali S (2016) Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Mater Res 19(1):167–174.  https://doi.org/10.1590/1980-5373-MR-2015-0423CrossRefGoogle Scholar
  25. Neto CD, Giacometti JA, Job AE, Ferreira FC, Fonseca JL, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103.  https://doi.org/10.1016/j.carbpol.2005.02.022CrossRefGoogle Scholar
  26. Orue A, Corcuera MA, Pena C, Eceiza A, Arbelaiz A (2014) Bionanocomposites based on thermoplastic starch and cellulose nanofibers. J Thermoplast Compos Mater 29:817–832.  https://doi.org/10.1177/0892705714536424CrossRefGoogle Scholar
  27. Pandey JK, Chu WS, Kim CS, Lee CS, Ahn SH (2009) Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos B Eng 40:676–680.  https://doi.org/10.1016/j.compositesb.2009.04.013CrossRefGoogle Scholar
  28. Qin Y, Zhang S, Yu J, Yang J, Xiong L, Sun Q (2016) Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr Polym 147:372–378.  https://doi.org/10.1016/j.carbpol.2016.03.095CrossRefPubMedGoogle Scholar
  29. Ramírez MGL, Satyanarayana KG, Iwakiri S, de Muniz GB, Tanobe V, Flores-Sahagun TS (2011) Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydr Polym 86:1712–1722.  https://doi.org/10.1016/j.carbpol.2011.07.002CrossRefGoogle Scholar
  30. Rubentheren V, Ward TA, Chee CY, Tang CK (2015) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387.  https://doi.org/10.1016/j.carbpol.2014.09.007CrossRefPubMedGoogle Scholar
  31. Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 97:373–381.  https://doi.org/10.1016/j.ijbiomac.2016.12.066CrossRefPubMedGoogle Scholar
  32. Salaberria AM, Labidi J, Fernandes SCM (2014) Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem Eng J 256:356–364.  https://doi.org/10.1016/j.cej.2014.07.009CrossRefGoogle Scholar
  33. Salaberria AM, Diaz RH, Labidi J, Fernandes SCM (2015a) Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocoll 46:93–102.  https://doi.org/10.1016/j.foodhyd.2014.12.016CrossRefGoogle Scholar
  34. Salaberria AM, Labidi J, Fernandes SCM (2015b) Different routes to turn chitin into stunning nano-objects. Eur Polym J 68:503–515.  https://doi.org/10.1016/j.eurpolymj.2015.03.005CrossRefGoogle Scholar
  35. Shankar S, Reddy JP, Rhim JW, Kim HY (2015) Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr Polym 117:468–475.  https://doi.org/10.1016/j.carbpol.2014.10.010CrossRefPubMedGoogle Scholar
  36. Silva SS, Duarte ARC, Oliveira JM (2013) Alternative methodology for chitin-hydroxyapatite composites using ionic liquids and supercritical fluid technology. J Bioact Compat Polym 28:481–491.  https://doi.org/10.1177/0883911513501595CrossRefGoogle Scholar
  37. Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Sci Technol 54:346–352.  https://doi.org/10.1016/j.lwt.2013.06.017CrossRefGoogle Scholar
  38. Tan W, Zhang Y, Szeto YS, Liao L (2008) A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxy-aluminum oligomeric cations. Compos Sci Technol 68:2917–2921.  https://doi.org/10.1016/j.compscitech.2007.10.007CrossRefGoogle Scholar
  39. Thakur G, Singh A, Singh I (2016) Chitosan-montmorillonite polymer composites: formulation and evaluation of sustained release tablets of aceclofenac. Sci Pharm 84:603–617.  https://doi.org/10.3390/scipharm84040603CrossRefGoogle Scholar
  40. Uddin AJ, Fujie M, Sembo S, Gotoh Y (2012) Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr Polym 87:799–805.  https://doi.org/10.1016/j.carbpol.2011.08.071CrossRefGoogle Scholar
  41. Wang J, Wang Z, Li J, Wang B, Liu J, Chen P, Miao M, Gu Q (2012) Chitin nanocrystals grafted with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their effects on thermal behavior of PHBV. Carbohydr Polym 87:784–789.  https://doi.org/10.1016/j.carbpol.2011.08.066CrossRefGoogle Scholar
  42. Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2008) Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 110:890–899.  https://doi.org/10.1002/appCrossRefGoogle Scholar
  43. Wysokowski M, Behm T, Born R, Bazhenov VV, Meißner H, Richter G, Szwarc-Rzepka K, Makarova A, Vyalikh D, Schupp P, Jesionowski T (2013a) Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater Sci Eng C 33:3935–3941.  https://doi.org/10.1016/j.msec.2013.05.030CrossRefGoogle Scholar
  44. Wysokowski M, Motylenko M, Stöcker H, Bazhenov VV, Langer E, Dobrowolska A, Czaczyk K, Galli R, Stelling AL, Behm T, Klapiszewski L (2013b) An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J Mater Chem B 1:6469–6476.  https://doi.org/10.1039/c3tb21186jCrossRefGoogle Scholar
  45. Wysokowski M, Motylenko M, Beyer J, Makarova A, Stöcker H, Walter J, Galli R, Kaiser S, Vyalikh D, Bazhenov VV, Petrenko I (2015a) Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res 8:2288–2301.  https://doi.org/10.1007/s12274-015-0739-5CrossRefGoogle Scholar
  46. Wysokowski M, Petrenko I, Motylenko M, Langer E, Bazhenov VV, Galli R, Stelling AL, Kljajić Z, Szatkowski T, Kutsova VZ, Stawski D (2015b) Renewable chitin from marine sponge as a thermostable biological template for hydrothermal synthesis of hematite nanospheres using principles of extreme biomimetics. Bioinspired Mater 1:12–22.  https://doi.org/10.1515/bima-2015-0001CrossRefGoogle Scholar
  47. Zakaria Z, Islam MS, Hassan A, Mohamad Haafiz MK, Arjmandi R, Inuwa IM, Hasan M (2013) Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites. Adv Mater Sci Eng 2013(629092).  https://doi.org/10.1155/2013/629092CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Merin Sara Thomas
    • 1
    • 2
  • Rekha Rose Koshy
    • 1
    • 3
  • Siji K. Mary
    • 1
    • 3
  • Sabu Thomas
    • 1
    • 4
  • Laly A. Pothan
    • 3
  1. 1.Department of ChemistryC.M.S. CollegeKottayamIndia
  2. 2.Department of ChemistryMar Thoma CollegeThiruvallaIndia
  3. 3.Department of ChemistryBishop Moore CollegeMavelikaraIndia
  4. 4.International and Interuniversity Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia

Personalised recommendations