Advertisement

Can Our Robots Rely on an Emotionally Charged Vision-for-Action? An Embodied Model for Neurorobotics

  • Gabriele Ferretti
  • Eris Chinellato
Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 12)

Abstract

The aim of blended cognition is to contribute to the design of more realistic and efficient robots by looking at the way humans can combine several kinds of affective, cognitive, sensorimotor and perceptual representations. This chapter is about vision-for-action. In humans and non-human primates (as well as in most of mammals), motor behavior in general and visuomotor representations for grasping in particular are influenced by emotions and affective perception of the salient properties of the environment. This aspect of motor interaction is not examined in depth in the biologically plausible robot models of grasping that are currently available. The aim of this chapter is to propose a model that can help us to make neurorobotics solutions more embodied, by integrating empirical evidence from affective neuroscience with neural evidence from vision and motor neuroscience. Our integration constitutes an attempt to make a neurorobotic model of vision and grasping more compatible with the insights proposed by the embodied view of cognition and perception followed in neuroscience, which seems to be the only one able to take into account the biological complexity of cognitive systems and, accordingly, to duly explain the high flexibility and adaptability of cognitive systems with respect to the environment they inhabit.

Keywords

Vision Action Emotions Embodied cognition Grasping Neurorobotics Visuomotor processing 

References

  1. Aglioti S, DeSouza JFX, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685PubMedCrossRefGoogle Scholar
  2. Algom D, Chajut E, Lev S (2004) A rational look at the emotional stroop phenomenon: a generic slowdown, not a stroop effect. J Exp Psychol Gen 133:323–338. 10.1037/0096-3445.133.3.323CrossRefPubMedGoogle Scholar
  3. Alsmith AJT, de Vignemont F (2012) Embodying the mind and representing the body. Rev Phil Psych 3:1–13.  https://doi.org/10.1007/s13164-012-0085-4 CrossRefGoogle Scholar
  4. Anelli F, Borghi AM, Nicoletti R (2012) Grasping the pain: motor resonance with dangerous affordances. Conscious Cogn 21:1627–1639PubMedCrossRefGoogle Scholar
  5. Anelli F, Nicoletti R, Bolzani R, Borghi AM (2013a) Keep away from danger: dangerous objects in dynamic and static situations. Front Hum Neurosci 7:344.  https://doi.org/10.3389/fnhum.2013.00344 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anelli F, Ranzini M, Nicoletti R, Borghi AM (2013b) Perceiving object dangerousness: an escape from pain? Exp Brain Res 228:457–466.  https://doi.org/10.1007/s00221-013-3577-2 CrossRefPubMedGoogle Scholar
  7. Ansuini C, Santello M, Massaccesi S, Castiello U (2006) Effects of end-goal on hand shaping. J Neurophysiol 95(4):2456–2465.  https://doi.org/10.1152/jn.01107.2005 CrossRefPubMedGoogle Scholar
  8. Aron AR, Verbruggen F (2008) Stop the presses: dissociating a selective from a global mechanism for stopping. Psychol Sci 19:1146–1153PubMedCrossRefGoogle Scholar
  9. Barrett LF, Bar LF (2009) See it with feeling: affective predictions during object perception. Philos Trans R Soc 364:1325–1334.  https://doi.org/10.1098/rstb.2008.0312 CrossRefGoogle Scholar
  10. Baumann MA, Fluet M-C, Scherberger H (2009) Context-specific grasp movement representation in the macaque anterior intraparietal area. J Neurosci 29:6436–6448PubMedCrossRefGoogle Scholar
  11. Bicchi A (2000) Hand for dexterous manipulation and robust grasping: a difficult road towards simplicity. IEEE Trans Robot Autom 16(6):652–662CrossRefGoogle Scholar
  12. Binkofski F, Buxbaum LJ (2013) Two action systems in the human brain. Brain Lang 127(2):222–229.  https://doi.org/10.1016/j.bandl.2012.07.007 CrossRefPubMedGoogle Scholar
  13. Borghi AM, Riggio L (2015) Stable and variable affordances are both automatic and flexible. Front Hum Neurosci 9:351.  https://doi.org/10.3389/fnhum.2015.00351 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Borghi AM, Gianelli C, Scorolli C (2010) Sentence comprehension: effectors and goals, self and others. An overview of experiments and implications for robotics. Front Neurorobot 4(3).  https://doi.org/10.3389/fnbot.2010.00003
  15. Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A, Rozzi S, Luppino G (2008) Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 18:1094–1111PubMedCrossRefGoogle Scholar
  16. Briscoe R (2009) Egocentric spatial representation in action and perception. Philos Phenomenol Res 79:423–460CrossRefGoogle Scholar
  17. Briscoe R, Schwenkler J (2015) Conscious vision in action. Cogn Sci 39(7):1435–1467PubMedCrossRefGoogle Scholar
  18. Brogaard B (2011) Conscious vision for action versus unconscious vision for action? Cogn Sci 35:1076–1104PubMedCrossRefGoogle Scholar
  19. Bruno N, Battaglini PP (2008) Integrating perception and action through cognitive neuropsychology (broadly conceived). Cogn Neuropshycol 25(7–8):879–890CrossRefGoogle Scholar
  20. Buccino G, Sato M, Cattaneo L, Rodà F, Riggio L (2009) Broken affordances, broken objects: a TMS study. Neuropsychologia 47:3074–3078.  https://doi.org/10.1016/j.neuropsychologia.2009.07.003 CrossRefPubMedGoogle Scholar
  21. Budisavljevic S, Dell’Acqua F, Zanatto D, Begliomini C, Miotto D, Motta R, Castiello U (2016) Asymmetry and structure of the fronto-parietal networks underlie visuomotor processing in humans. Cereb Cortex.  https://doi.org/10.1093/cercor/bhv348
  22. Bullier J, Hupé JM, James AC, Girard P (2001) The role of feedback connections in shaping the responses of visual cortical neurons. Prog Brain Res 134:193–204PubMedCrossRefGoogle Scholar
  23. Cai W, Oldenkamp CL, Aron AR (2011) A proactive mechanism for selective suppression of response tendencies. J Neurosci 31:5965–5969PubMedPubMedCentralCrossRefGoogle Scholar
  24. Caligiore D, Borghi AM, Parisi D, Baldassarre G (2010) TRoPICALS: a computational embodied neuroscience model of experiments on compatibility effects. Psychol Rev 117:1188–1228.  https://doi.org/10.1037/a0020887 CrossRefPubMedGoogle Scholar
  25. Caligiore D, Borghi AM, Parisi D, Ellis R, Cangelosi A, Baldassarre G (2013) How affordances associated with a distractor object affect compatibility effects: a study with the computational model TRoPICALS. Psychol Res 77(1):7–19PubMedCrossRefGoogle Scholar
  26. Caligiore D, Borghi AM, Parisi D, Ellis R, Cangelosi A, Baldassarre G (eds) (2013b) How affordances associated with a distractor object affect compatibility effects: a study with the computational model TRoPICALS. Psychol Res 77:7–19.  https://doi.org/10.1007/s00426-012-0424-1 PubMedCrossRefGoogle Scholar
  27. Castiello U (2005) The neuroscience of grasping. Nat Rev 6(9):726–736.  https://doi.org/10.1038/nrn1744 CrossRefGoogle Scholar
  28. Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neuroscientist 14(2):157–170.  https://doi.org/10.1177/1073858407312080 (Epub 2008 Jan 24)CrossRefPubMedGoogle Scholar
  29. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinsos-Suarez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex: a review. Cereb Cortex 10:220–242.  https://doi.org/10.1093/cercor/10.3.220 CrossRefPubMedGoogle Scholar
  30. Chemero A (2009) Radical embodied cognitive science. The MIT Press, Cambridge, MACrossRefGoogle Scholar
  31. Chinellato E, del Pobil AP (2008) fRI, functional robotic imaging: Visualizing a robot brain. In: IEEE international conference on distributed human-machine systemsGoogle Scholar
  32. Chinellato E, del Pobil AP (2016) The visual neuroscience of robotic grasping. Achieving sensorimotor skills through dorsal-ventral stream integration. Springer International Publishing, ChamCrossRefGoogle Scholar
  33. Chinellato E, Grzyb BJ, Marzocchi N, Bosco A, Fattori P, del Pobil AP (2011) The Dorso-medial visual stream: from neural activation to sensorimotor interaction. Neurocomputing 74:1203–1212CrossRefGoogle Scholar
  34. Cisek P (2007) Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Biol Sci 362:1585–1599.  https://doi.org/10.1098/rstb.2007.2054 CrossRefGoogle Scholar
  35. Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298PubMedCrossRefPubMedCentralGoogle Scholar
  36. Claffey MP, Sheldon S, Stinear CM, Verbruggen F, Aron AR (2010) Having a goal to stop action is associated with advance control of specific motor representations. Neuropsychologia 48(2):541–548.  https://doi.org/10.1016/j.neuropsychologia.2009.10.015 Epub 2009 Oct 29CrossRefPubMedGoogle Scholar
  37. Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 47(6):1553–1562.  https://doi.org/10.1016/j.neuropsychologia.2008.12.034 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Colombetti G (2007) Enactive appraisal. Phenomenol Cogn Sci 6:527–546CrossRefGoogle Scholar
  39. Colombetti G (2013) The feeling body: affective science meets the enactive mind. The MIT Press, Cambridge, MAGoogle Scholar
  40. Colombetti G, Thompson E (2008) The feeling body: toward an enactive approach to emotion. In: Overton WF, Müller U, Newman J (eds) Developmental perspectives on embodiment and consciousness. Lawrence Erlbaum, New York, pp 45–68Google Scholar
  41. Costantini M, Ambrosini E, Tieri G, Sinigaglia C, Committeri G (2010) Where does an object trigger an action? An investigation about affordances in space. Exp Brain Res 207:95–103.  https://doi.org/10.1007/s00221-010-2435-8 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Creem SH, Proffitt DR (2001) Grasping objects by their handles: a necessary interaction between cognition and action. J Exp Psychol Hum Percept Perform 27(1):218–228PubMedCrossRefGoogle Scholar
  43. Culham JC (2006) Functional neuroimaging: experimental design and analysis. In: Cabeza R, Kingstone A (eds) Handbook of functional neuroimaging of cognition. MIT Press, Cambridge, pp 53–82Google Scholar
  44. Culham JC, Cavina-Pratesi C, Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44(13):2668–2684.  https://doi.org/10.1016/j.neuropsychologia.2005.11.003 CrossRefPubMedGoogle Scholar
  45. Delafield-Butt JT, Gangopadhyay N (2013) Sensorimotor intentionality: the origins of intentionality in prospective agent action. Dev Rev 33:399–425CrossRefGoogle Scholar
  46. Derbyshire N, Ellis R, Tucker M (2006) The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory. Acta Psychol 122(1):74–98CrossRefGoogle Scholar
  47. Dijkerman HC, McIntosh RD, Schindler I, Nijboer TCW, Milner AD (2009) Choosing between alternative wrist postures: action planning needs perception. Neuropsychologia 47(6):1476–1482.  https://doi.org/10.1016/j.neuropsychologia.2008.12.002 CrossRefPubMedGoogle Scholar
  48. Duffy BR, Joue G (2000) Intelligent robots: the question of embodiment, BRAIN-MACHINE December 20-22, 2000, Ankara, Turkey effects: a study with the computational model TRoPICALS. Psychol Res 77(1):7–19.  https://doi.org/10.1007/s00426-012-0424-1 Epub 2012 Feb 11CrossRefGoogle Scholar
  49. Eiben AE (2014) Grand challenges for evolutionary robotics. Front Robot AI, SPECIALTY GRAND CHALLENGE ARTICLE 1(4)  https://doi.org/10.3389/frobt.2014.00004
  50. Eiben AE, Kernbach S, Haasdijk E (2012) Embodied artificial evolution – artificial evolutionary systems in the 21st century. Evol Intell 5:261–272.  https://doi.org/10.1007/s12065-012-0071-x CrossRefPubMedPubMedCentralGoogle Scholar
  51. Eiben A, Bredeche N, Hoogendoorn M, Stradner J, Timmis J, Tyrrell A et al (2013) The triangle of life: evolving robots in real-time and real-space. In: Liò OM, Nicosia G, Nolfi S, Pavone M (eds) Advances in artificial life, ECAL 2013. MIT Press, Cambridge, MA, pp 1056–1063CrossRefGoogle Scholar
  52. Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10(3):308–317.  https://doi.org/10.1093/cercor/10.3.308 CrossRefPubMedGoogle Scholar
  53. Ellis R, Tucker M (2000) Micro-affordance: the potentiation of components of action by seen objects. Br J Psychol 91:451–471PubMedCrossRefGoogle Scholar
  54. Fadiga L, Fogassi L, Gallese V, Rizzolatti G (2000) Visuomotor neurons: ambiguity of the discharge or ‘motor’ perception? Int J Psychophysiol 35:165–177PubMedCrossRefGoogle Scholar
  55. Ferretti G (2016a) Neurophysiological states and perceptual representations: the case of action properties detected by the ventro-dorsal stream. In: Magnani L, Casadio C (eds) Model-based reasoning in science and technology. Models and inferences: logical, epistemological, and cognitive issues, Series “Sapere”, Studies in applied philosophy and rational ethics. Springer, HeidelbergGoogle Scholar
  56. Ferretti G (2016b) Pictures, action properties and motor related effects. Synthese.  https://doi.org/10.1007/s11229-016-1097-x CrossRefGoogle Scholar
  57. Ferretti G (2016c) Through the forest of motor representations. Conscious Cogn 43:177–196.  https://doi.org/10.1016/j.concog.2016.05.013 CrossRefPubMedGoogle Scholar
  58. Ferretti G (2016d) Visual feeling of presence. Pac Philos Q.  https://doi.org/10.1111/papq.12170 CrossRefGoogle Scholar
  59. Ferretti G (2017a) Pictures, emotions, and the dorsal/ventral account of picture perception. Rev Philos Psychol.  https://doi.org/10.1007/s13164-017-0330-y CrossRefGoogle Scholar
  60. Ferretti G (2017b) Two visual systems in molyneux subjects. Phenomenol Cogn Sci 17(4):643–679.  https://doi.org/10.1007/s11097-017-9533-z CrossRefGoogle Scholar
  61. Ferretti G (2017c) Are pictures peculiar objects of perception? J Am Philos Assoc 3(3):372–393.  https://doi.org/10.1017/apa.2017.28 CrossRefGoogle Scholar
  62. Ferretti G (forthcoming) The neural dynamics of seeing-in. ErkenntnisGoogle Scholar
  63. Ferretti G, Alai M (2016) Enactivism, representations and canonical neurons. Argumentation 1:2Google Scholar
  64. Ferretti, G, and Zipoli Caiani, S. (2018). Solving the Interface Problem without Translation: the Same Format Thesis. Pacific Philosophical Quarterly. https://doi.org/10.1111/papq.12243. CrossRefGoogle Scholar
  65. Floreano D, Husbands P, Nolfi S (2008) Evolutionary robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics, vol G.61. Springer, Berlin, pp 1423–1451CrossRefGoogle Scholar
  66. Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 2005(15):626–631.  https://doi.org/10.1016/j.conb.2005.10.015 CrossRefGoogle Scholar
  67. Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci 1:137–160PubMedCrossRefGoogle Scholar
  68. Gallagher S (2005) How the body shapes the mind. Oxford University Press, New York, 284 pp. ISBN:284, 0199271941Google Scholar
  69. Gallese V (2007) The “conscious” dorsal stream: embodied simulation and its role in space and action conscious awareness. Psyche 13(1):1–20Google Scholar
  70. Gallese V, Craighero L, Fadiga L, Fogassi L (1999) Perception through action. Psyche 5(21):1Google Scholar
  71. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  72. Glover S (2004) Separate visual representations in the planning and control of action. Behav Brain Sci 27:3–78PubMedGoogle Scholar
  73. Goldman AI (2012) A moderate approach to embodied cognitive science. Rev Phil Psych 3:71–88.  https://doi.org/10.1007/s13164-012-0089-0 CrossRefGoogle Scholar
  74. Goldman AI (2012b) A moderate approach to embodied cognitive science. Rev Phil Psych 3:71–88.  https://doi.org/10.1007/s13164-012-0089-0 CrossRefGoogle Scholar
  75. Goodale MA, Milner AD (2004a) Sight unseen. Oxford University Press, OxfordGoogle Scholar
  76. Goodale MA, Milner AD (2004b) Plans for action. Behav Brain Sci 27:37–40CrossRefGoogle Scholar
  77. Himmelbach M, Karnath HO (2005) Dorsal and ventral stream interaction: contributions from optic ataxia. J Cogn Neurosci 17(4):632–640.  https://doi.org/10.1162/0898929053467514 CrossRefPubMedGoogle Scholar
  78. Hoeren M, Kaller CP, Glauche V, Vry MS, Rijntjes M, Hamzei F, Weiller C (2013) Action semantics and movement characteristics engage distinct processing streams during the observation of tool use. Exp Brain Res 229(2):243–260.  https://doi.org/10.1007/s00221-013-3610-5 CrossRefPubMedGoogle Scholar
  79. Ikkai A, Jerde TA, Curtis CE (2011) Perception and action selection dissociate human ventral and dorsal cortex. J Cogn Neurosci 23(6):1494–1506.  https://doi.org/10.1162/jocn.2010.21499 CrossRefPubMedGoogle Scholar
  80. Jacob P, Jeannerod M (2003) Ways of seeing: the scope and limits of visual cognition. Oxford University Press, OxfordCrossRefGoogle Scholar
  81. Janssen P, Vogels R, Liu Y, Orban GA (2001) Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces. J Neurosci 21:9419–9429PubMedCrossRefGoogle Scholar
  82. Jeannerod M, Jacob P (2005) Visual cognition: a new look at the two-visual systems model. Neuropsychologia 43:301–312PubMedCrossRefGoogle Scholar
  83. Kandel ERJH, Schwartz TM, Jessell SA, Siegelbaum A, Hudspeth J (2013) Principles of neural science. McGraw Hill Medical, New YorkGoogle Scholar
  84. Kaplan E (2004) The M, P, and K pathways of the primate visual system. In: Chalupa LM, Werner JS (eds) The visual neuroscience. The MIT Press, Cambridge, MA, pp 481–494Google Scholar
  85. Kitadono K, Humphreys GW (2009) Sustained interactions between perception and action in visual extinction and neglect: evidence from sequential pointing. Neuropsychologia 47(6):1592–1599.  https://doi.org/10.1016/j.neuropsychologia.2008.11.010 CrossRefPubMedGoogle Scholar
  86. Kondo H, Saleem KS, Price JL (2003) Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465:499–523.  https://doi.org/10.1002/cne.10842 CrossRefPubMedGoogle Scholar
  87. Kragic D, Christensen HI (2003) Biologically motivated visual servoing and grasping for real world tasks. In: IEEE international conference on intelligent robots and systems, Las Vegas, USAGoogle Scholar
  88. Kravitz DJ, Saleem KI, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17(1):26–49PubMedCrossRefGoogle Scholar
  90. Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372PubMedCrossRefGoogle Scholar
  91. Kveraga K, Boshyan J, Bar M (2007a) Magnocellular projections as the trigger of top-down facilitation in recognition. J Neurosci 27(48):13232–13240.  https://doi.org/10.1523/JNEUROSCI.3481-07.2007 CrossRefPubMedGoogle Scholar
  92. Kveraga K, Ghuman AS, Bar M (2007b) Top-down predictions in the cognitive brain. Brain Cogn 65:145–168.  https://doi.org/10.1016/j.bandc.2007.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Laschi C, Asuni G, Teti G, Carrozza M, Dario P, Guglielmelli E, Johansson R (2006) A bio- inspired neural sensory-motor coordination scheme for robot reaching and preshaping. In: IEEE international conference on biomedical robotics and biomechatronics, pp 531–536Google Scholar
  94. Latash ML, Zatsiorsky VM (2009) Multi-finger prehension: control of a redundant mechanical system. Adv Exp Med Biol 629:597–618.  https://doi.org/10.1007/978-0-387-77064-2_32 CrossRefPubMedGoogle Scholar
  95. Laycock R, Crewther SG (2008) Towards an understanding of the role of the ‘magnocellular advantage’ in fluent reading. Neurosci Biobehav Rev 32:1494–1506.  https://doi.org/10.1016/j.neubiorev.2008.06.002 CrossRefPubMedGoogle Scholar
  96. Laycock R, Crewther SG, Crewther DP (2007) A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neurosci Biobehav Rev 31:363–376.  https://doi.org/10.1016/j.neubiorev.2006.10.003 CrossRefPubMedGoogle Scholar
  97. Laycock R, Crewther DP, Fitzgerald PB, Crewther SG (2009) TMS disruption of V5/MT+ indicates a role for the dorsal stream in word recognition. Exp Brain Res 197:69–79.  https://doi.org/10.1007/s00221-009-1894-2 CrossRefPubMedGoogle Scholar
  98. Lebedev MA, Wise SP (2002) Insights into seeing and grasping: distinguishing the neural correlates of perception and action. Behav Cogn Neurosci Rev 1(2):108–129.  https://doi.org/10.1177/1534582302001002002 CrossRefPubMedGoogle Scholar
  99. Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45.  https://doi.org/10.1146/annurev.psych.57.102904.190143 CrossRefPubMedGoogle Scholar
  100. McIntosh RD, Schenk T (2009) Two visual streams for perception and action: current trends. Neuropsychologia 47(6):1391–1396.  https://doi.org/10.1016/j.neuropsychologia.2009.02.009 (Epub 2009 Feb 13)CrossRefPubMedGoogle Scholar
  101. Milner A, Goodale M (1995/2006) The visual brain in action, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  102. Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785PubMedCrossRefGoogle Scholar
  103. Morales A, Chinellato E, Fagg AH, del Pobil AP (2004) Using experience for assessing grasp reliability. Int J Humanoid Rob 1(4):671–691CrossRefGoogle Scholar
  104. Munakata Y, Herd SA, Chatham CH, Depue BE, Banich MT, O’Reilly RC (2011) A unified framework for inhibitory control. Trends Cogn Sci 15(10):453–459PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nakata H, Sakamoto K, Ferretti A, Gianni Perrucci M, Del Gratta C, Kakigi R, Luca RG (2008) Somato-motor inhibitory processing in humans: an event-related functional MRI study. NeuroImage 39(4):1858–1866PubMedCrossRefGoogle Scholar
  106. Nanay B (2011) Do we sense modalities with our sense modalities? Ratio 24:299–310CrossRefGoogle Scholar
  107. Nanay B (2013) Between perception and action. Oxford University Press, OxfordCrossRefGoogle Scholar
  108. Nanay B (2014) Empirical problems with anti-representationalism. In: Brogaard B (ed) Does perception have content? Oxford University Press, New YorkGoogle Scholar
  109. Napier JR (1955) The form and function of the carpo-metacarpal joint of the thumb. J Anat 89:362–369PubMedPubMedCentralGoogle Scholar
  110. Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg Br 38-B:902–913PubMedCrossRefGoogle Scholar
  111. Noë A (2004) Action in perception. The MIT Press, Cambridge, MAGoogle Scholar
  112. Nolfi S, Floreano D (2000) Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT Press, Cambridge, MAGoogle Scholar
  113. O’Reilly RC (2010) The what and how of prefrontal cortical organization. Trends Neurosci 33(8):355–361.  https://doi.org/10.1016/j.tins.2010.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Pammer K, Hansen P, Holliday I, Cornelissen P (2006) Attentional shifting and the role of the dorsal pathway in visual word recognition. Neurophychology 44(14):2926–2936CrossRefGoogle Scholar
  115. Pfeifer R, Bongard J (2006) How the body shapes the way we think. MIT Press, Cambridge, MACrossRefGoogle Scholar
  116. Pfeifer R, Lungarella M, Fumyia I (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318(5853):1088–1093.  https://doi.org/10.1126/science.1145803 CrossRefPubMedGoogle Scholar
  117. Price JL (2007) Connections of orbital cortex. In: Zald DH, Rauch SL (eds) The orbitofrontal cortex. Oxford University Press, New York, pp 38–56Google Scholar
  118. Raos V, Umiltà MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95:709–729PubMedCrossRefGoogle Scholar
  119. Riggio L, Patteri I, Oppo A, Buccino G, Umiltà C (2006) The role of affordances in inhibition of return. Psychon Bull Rev 13:1085–1090.  https://doi.org/10.3758/bf03213930 CrossRefPubMedGoogle Scholar
  120. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157PubMedCrossRefGoogle Scholar
  121. Rizzolatti G, Sinigaglia C (2008) Mirrors in the brain how our minds share actions and emotions. Oxford University Press, OxfordGoogle Scholar
  122. Romero MC, Pani P, Janssen P (2014) Coding of shape features in the macaque anterior intraparietal area systems/circuits 4006. J Neurosci 34(11):4006–4021PubMedCrossRefGoogle Scholar
  123. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417.  https://doi.org/10.1093/cercor/bhj076 CrossRefPubMedGoogle Scholar
  124. Saxena A, Driemeyer J, Ng AY (2008) Robotic grasping of novel objects using vision. Int J Robot Res 27(2):157–173.  https://doi.org/10.1177/0278364907087172 CrossRefGoogle Scholar
  125. Schenk T, McIntosh RD (2010) Do we have independent visual streams for perception and action? Cogn Neurosci 1:52–78PubMedCrossRefGoogle Scholar
  126. Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96(6):2293–2300PubMedCrossRefGoogle Scholar
  127. Schindler I, Rice NJ, McIntosh RD, Rossetti Y, Vighetto A, Milner AD (2004) Automatic avoidance of obstacles is a dorsal stream function: evidence from optic ataxia. Nat Neurosci 7(7).  https://doi.org/10.1038/nn1273 PubMedCrossRefGoogle Scholar
  128. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10(12):885–892.  https://doi.org/10.1038/nrn2753 Epub 2009 Nov 11CrossRefPubMedPubMedCentralGoogle Scholar
  129. Sereno ME, Trinath T, Augath M, Logothetis NK (2002) Three-dimensional shape representation in monkey cortex. Neuron 33(4):635–652PubMedCrossRefGoogle Scholar
  130. Shapiro L (2011) The embodied mind. Routledge, New YorkGoogle Scholar
  131. Singhal A, Culham JC, Chinellato E, Goodale MA (2007) Dual-task interference is greater in delayed grasping than in visually guided grasping. J Vis 7(5):1–12PubMedCrossRefGoogle Scholar
  132. Singhal A, Monaco S, Kaufman LD, Culham JC (2013) Human fMRI reveals that delayed action re-recruits visual perception. PLoS One 8(9):2013.  https://doi.org/10.1371/journal.pone.0073629 (eCollection 2013)CrossRefGoogle Scholar
  133. Smeets JB, Brenner E, Martin J (2009) Grasping Occam’s razor. Adv Exp Med Biol 629:499–522.  https://doi.org/10.1007/978-0-387-77064-2_27 CrossRefPubMedGoogle Scholar
  134. Smeets JB, Martin J, Brenner E (2010) Similarities between digits’ movements in grasping, touching and pushing. Exp Brain Res 203(2):339–346.  https://doi.org/10.1007/s00221-010-2236-0 Epub 2010 Apr 9CrossRefPubMedPubMedCentralGoogle Scholar
  135. Sutherland A, Crewther DP (2010) Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception. Brain 133:2089–2097.  https://doi.org/10.1093/brain/awq122 CrossRefPubMedGoogle Scholar
  136. Tankus A, Fried I (2012) Visuomotor coordination and motor representation by human temporal lobe neurons. J Cogn Neurosci 24(3):600–610PubMedCrossRefGoogle Scholar
  137. Theys T, Romero MC, van Loon J, Janssen P (2015) Shape representations in the primate dorsal visual stream. Front Comput Neurosci 9(43).  https://doi.org/10.3389/fncom.2015.00043
  138. Tipper SP, Paul M, Hayes A (2006) Vision-for-action: the effects of object property discrimination and action state on affordance compatibility effects. Psychon Bull Rev 13:493–498PubMedCrossRefGoogle Scholar
  139. Tucker M, Ellis R (1998) On the relations between seen objects and components of potential actions. J Exp Psychol Hum Percept Perform 24:830–846PubMedCrossRefGoogle Scholar
  140. Turella L, Lignau A (2014) Neural correlates of grasping. Front Hum Neurosci 8(686).  https://doi.org/10.3389/fnhum.2014.00686
  141. Vargas P, Paolo ED, Harvey I, Husbands P (eds) (2014) The horizons of evolutionary robotics. MIT Press, Cambridge, MAGoogle Scholar
  142. Westwood D, Danckert J, Servos P, Goodale M (2002) Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Exp Brain Res 144(2):262–267PubMedCrossRefGoogle Scholar
  143. Young G (2006) Are different affordances subserved by different neural pathways? Brain Cogn 62:134–142PubMedCrossRefGoogle Scholar
  144. Zald DH, Andreotti C (2010) Neuropsychological assessment of the orbital and ventromedial prefrontal cortex. Neuropsychologia 48(12):3377–3391PubMedCrossRefGoogle Scholar
  145. Zald DH, Rauch SL (2007) The orbitofrontal cortex. Oxford University Press, New YorkGoogle Scholar
  146. Zipoli Caiani S, Ferretti G (2016) Semantic and pragmatic integration in vision for action. Conscious Cogn 48:40–54PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG (outside the USA) 2019

Authors and Affiliations

  • Gabriele Ferretti
    • 1
  • Eris Chinellato
    • 2
  1. 1.Dipartimento di Lettere e FilosofiaUniversity of FlorenceFlorenceItaly
  2. 2.School of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations