Advertisement

Towards Autonomous Artificial Agents? Proposal for a Naturalistic Activity-Based Model of (Artificial) Life

  • Corentin ChanetEmail author
  • David Eubelen
Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 12)

Abstract

While the contemporary achievements of AI and robotics are indisputable, the issue of autonomy for artificial agents still looms ahead despite technological progress and rich conceptual debates. Drawing on recent theoretical propositions from the enactive approach on autonomy, we first highlight several limitations of what we call an identity-based model. Through the study of four real-life cases, we then not only argue that autonomy cannot be conflated with behavioral self-maintenance or organizational closure, but that it can sometimes violate these conditions. Finally, we propose a naturalistic activity-based model of autonomous agents that emphasizes the importance of norm-establishing processes distributed across an intricacy of milieus.

Keywords

Autonomy Activity Normativity Enactive approach Autopoiesis Artificial intelligence Environment 

References

  1. Abrams P (2001) Adaptationism, optimality models, and tests of adaptive scenarios. In: Orzack SH, Sober E (eds) Adaptationism and optimality. Cambridge University Press, CambridgeGoogle Scholar
  2. Adams F, Aizawa K (2010) The bounds of cognition. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  3. Amundson R (2001) Adaptation, development, and the quest for common ground. In: Orzack SH, Sober E (eds) Adaptationism and optimality. Cambridge University Press, CambridgeGoogle Scholar
  4. Ashby WR (1947) The nervous system as physical machine: with special reference to the origin of adaptive behavior. Mind 56(221):44–59PubMedCrossRefGoogle Scholar
  5. Ashby WR (1960) Design for a brain. Springer, Dordrecht.  https://doi.org/10.1007/978-94-015-1320-3 CrossRefGoogle Scholar
  6. Barandiaran XE (2008) Mental Life: a naturalized approach to the autonomy of cognitive agents. University of the Basque Country. http://www.barandiaran.net/phdthesis/
  7. Barandiaran XE (2016) Autonomy and enactivism: towards a theory of sensorimotor autonomous agency. Topoi 1–22Google Scholar
  8. Barandiaran XE, Moreno A (2006) On what makes certain dynamical systems cognitive: a minimally cognitive organization program. Adapt Behav 14(2):171–185CrossRefGoogle Scholar
  9. Barandiaran XE, Di Paolo EA, Rohde M (2009) Defining agency: individuality, normativity, asymmetry, and spatio-temporality in action. Adapt Behav 17(5):367–386.  https://doi.org/10.1177/1059712309343819 CrossRefGoogle Scholar
  10. Barbaras R (2008) Introduction à une phénoménologie de la vie. J. Vrin, ParisGoogle Scholar
  11. Barbaras R (2010) Life and exteriority: the problem of metabolism. In: Stewart J, Gapenne O, Di Paolo EA (eds) Enaction toward a new paradigm for cognitive science. MIT Press, Cambridge, MA, pp 89–122 http://site.ebrary.com/id/10453038 Google Scholar
  12. Beer RD (1996) Toward the evolution of dynamical neural networks for minimally cognitive behaviour. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson S (eds) From animals to animats 4: Proceedings of the Fourth International conference on simulation of adaptive behavior, MIT Press, pp 421–429Google Scholar
  13. Beer RD (2003) The dynamics of active categorical perception in an evolved model agent. Adapt Behav 11(4):209–243.  https://doi.org/10.1177/1059712303114001 CrossRefGoogle Scholar
  14. Beverly S, Curran D, Musyl M, Molony B (2009) Effects of eliminating shallow hooks from tuna longline sets on target and non-target species in the Hawaii-based pelagic tuna fishery. Fish Res 96(2–3):281–288.  https://doi.org/10.1016/j.fishres.2008.12.010 CrossRefGoogle Scholar
  15. Birkinshaw CR (1999) Use of millipedes by black lemurs to anoint their bodies. Folia Primatol 70(3):170–171PubMedCrossRefGoogle Scholar
  16. Boden MA (2008) Autonomy: what is it? Biosyst Model Autonomy 91(2):305–308.  https://doi.org/10.1016/j.biosystems.2007.07.003 CrossRefGoogle Scholar
  17. Braithwaite RW, Lee AK (1979) A mammalian example of Semelparity. Am Nat 113(1):151–155.  https://doi.org/10.1086/283372 CrossRefGoogle Scholar
  18. Bristowe WS (1958) The world of spiders. Collins, LondonGoogle Scholar
  19. Burghardt GM (2005) The genesis of animal play: testing the limits. MIT Press, Cambridge, MACrossRefGoogle Scholar
  20. Canguilhem G (1966) Le Normal et le pathologique. Presses Universitaires de France, ParisGoogle Scholar
  21. Canguilhem G (2015) La connaissance de la vie. Librairie Philosophique J. Vrin, ParisGoogle Scholar
  22. Christensen WD, Hooker CA (2000) Autonomy and the emergence of intelligence: organised interactive construction. Commun Cogn Artif Intell 17(3–4):133–157Google Scholar
  23. Collier J (2008) Simulating autonomous anticipation: the importance of Dubois’ conjecture. Biosystems 91(2):346–354.  https://doi.org/10.1016/j.biosystems.2007.05.011 PubMedCrossRefGoogle Scholar
  24. Craig CL (1986) Orb-web visibility: the influence of insect flight behaviour and visual physiology on the evolution of web designs within the Araneoidea. Animal Behaviour 34(février):54–68.  https://doi.org/10.1016/0003-3472(86)90006-0 CrossRefGoogle Scholar
  25. Craig CL, Okubo A, Andreasen V (1985) Effect of spider orb-web and insect oscillations on prey interception. J Theor Biol 115(2):201–211.  https://doi.org/10.1016/S0022-5193(85)80096-5 CrossRefGoogle Scholar
  26. Crowell SG (2013) Normativity and phenomenology in Husserl and Heidegger. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  27. Degenaar J, O’Regan JK (2015) Sensorimotor theory and enactivism. Topoi, août. doi: https://doi.org/10.1007/s11245-015-9338-z CrossRefGoogle Scholar
  28. Denny M (1976) The physical properties of spider’s silk and their role in the design of orb-webs. J Exp Biol 65(2):483–506Google Scholar
  29. Di Paolo EA (2003) Organismically-inspired robotics: homeostatic adaptation and teleology beyond the closed sensorimotor loop. In: Dynamical systems approach to embodiment and sociality, pp 19–42Google Scholar
  30. Di Paolo EA (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenol Cogn Sci 4(4):429–452.  https://doi.org/10.1007/s11097-005-9002-y CrossRefGoogle Scholar
  31. Di Paolo EA (2009) Extended life. Topoi 28(1):9–21.  https://doi.org/10.1007/s11245-008-9042-3 CrossRefGoogle Scholar
  32. Di Paolo EA, Iizuka H (2008) How (not) to model autonomous behaviour. Biosyst Model Autonomy 91(2):409–423.  https://doi.org/10.1016/j.biosystems.2007.05.016 CrossRefGoogle Scholar
  33. Di Paolo EA, Barandiaran XE, Beaton M, Buhrmann T (2014) Learning to perceive in the sensorimotor approach: Piaget’s theory of equilibration interpreted dynamically. Front Hum Neurosci 8(juillet).  https://doi.org/10.3389/fnhum.2014.00551
  34. Di Paolo EA, Buhrmann T, Barandiaran X (2017) Sensorimotor life: an enactive proposal. Oxford University Press, OxfordCrossRefGoogle Scholar
  35. Dieckmann U, Marrow P, Law R (1995) Evolutionary cycling in predator-prey interactions: population dynamics and the Red Queen. J Theor Biol 176(1):91–102PubMedCrossRefGoogle Scholar
  36. Dodman NH, Normile JA, Shuster L, Rand W (1994) Equine self-mutilation syndrome (57 cases). J Am Vet Med Assoc 204(8):1219–1223PubMedGoogle Scholar
  37. Dreyfus HL (1990) Being-in-the-world: a commentary on Heidegger’s being and time, division I. MIT Press, CambridgeGoogle Scholar
  38. Duro RJ, Bellas F, Becerra Permuy JA (2014) Brain-like robotics. In: Kasabov N (ed) Springer handbook of bio-/neuroinformatics. Springer, Berlin/Heidelberg, pp 1019–1056.  https://doi.org/10.1007/978-3-642-30574-0_57 CrossRefGoogle Scholar
  39. Egbert MD, Barandiaran XE (2014) Modeling habits as self-sustaining patterns of sensorimotor behavior. Front Hum Neurosci 8(août).  https://doi.org/10.3389/fnhum.2014.00590
  40. Eisner T, Nowicki S (1983) Spider web protection through visual advertisement: role of the stabilimentum. Science 219(4581):185–187.  https://doi.org/10.1126/science.219.4581.185 PubMedCrossRefGoogle Scholar
  41. Fisher DO, Dickman CR, Jones ME, Blomberg SP (2013) Sperm competition drives the evolution of suicidal reproduction in mammals. Proc Natl Acad Sci 110(44):17910–17914.  https://doi.org/10.1073/pnas.1310691110 PubMedCrossRefGoogle Scholar
  42. Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories, methods, and technologies. Intelligent robotics and autonomous agents. MIT Press, Cambridge, MAGoogle Scholar
  43. Forrest TG (1982) Acoustic communication and baffling behaviors of crickets. Fla Entomol 65(1):33–44.  https://doi.org/10.2307/3494144 CrossRefGoogle Scholar
  44. Frankfurt HG (1978) The problem of action. Am Philos Q 15(2):157–162Google Scholar
  45. Froese T, Di Paolo EA (2011) The enactive approach: theoretical sketches from cell to society. Pragmat Cogn 19(1):1–36.  https://doi.org/10.1075/pc.19.1.01fro CrossRefGoogle Scholar
  46. Froese T, Ziemke T (2009) Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif Intell 173(3–4):466–500.  https://doi.org/10.1016/j.artint.2008.12.001 CrossRefGoogle Scholar
  47. Froese T, Virgo N, Izquierdo E (2007) Autonomy: a review and a reappraisal. In: Advances in artificial life. Springer, Berlin/Heidelberg, pp 455–464.  https://doi.org/10.1007/978-3-540-74913-4_46 CrossRefGoogle Scholar
  48. Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, BostonGoogle Scholar
  49. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  50. Gould SJ (1984) Only his wings remained. Nat Hist 93(9):10–18Google Scholar
  51. Guchet X (2010) Pour un humanisme technologique: culture, technique et société dans la philosophie de Gilbert Simondon. PUF, ParisCrossRefGoogle Scholar
  52. Haselager WFG (2005) Robotics, philosophy and the problems of autonomy. Pragmat Cogn 13(3):515–532CrossRefGoogle Scholar
  53. Haselager WFG, Gonzalez MEQ (2007) Mechanicism and autonomy: what can robotics teach us about human cognition and action? Pragmat Cogn 15(3):407–412.  https://doi.org/10.1075/pc.15.3.02has CrossRefGoogle Scholar
  54. Hieber CS (1984) Orb-web orientation and modification by the spiders Araneus diadematus and Araneus gemmoides (Araneae: Araneidae) in response to wind and light. Ethology 65(3):250–260Google Scholar
  55. Iizuka H, Di Paolo EA (2007) Toward Spinozist robotics: exploring the minimal dynamics of behavioral preference. Adapt Behav 15(4):359–376.  https://doi.org/10.1177/1059712307084687 CrossRefGoogle Scholar
  56. Jamieson IG (1986) The functional approach to behavior: is it useful? Am Nat 127(2):195–208CrossRefGoogle Scholar
  57. Jonas H (1968) Biological foundations of individuality. Int Philos Q 8(2):231–251.  https://doi.org/10.5840/ipq19688218 CrossRefGoogle Scholar
  58. Keller L, Ross KG (1993) Phenotypic plasticity and “Cultural Transmission” of alternative social organizations in the fire ant Solenopsis Invicta. Behav Ecol Sociobiol 33(2).  https://doi.org/10.1007/BF00171663
  59. Knights D, Willmott H (2002) Autonomy as utopia or dystopia. Sociol Rev 50(1 suppl):59–81CrossRefGoogle Scholar
  60. Kupiec J-J, Sonigo P (2000) Ni Dieu ni gène: pour une autre théorie de l’hérédité. Science ouverte. Seuil, ParisGoogle Scholar
  61. Langer RM (1969) Elementary physics and spider webs. Integr Comp Biol 9(1):81–89.  https://doi.org/10.1093/icb/9.1.81 CrossRefGoogle Scholar
  62. Leont’ev AN (1981) The problem of activity in psychology. In: Wertsch JV (ed) The problem of activity in psychology. M.E. Sharpe, Armonk, pp 37–71Google Scholar
  63. Magalhães P, White GK (2016) The sunk cost effect across species: a review of persistence in a course of action due to prior investment. J Exp Anal Behav 105(3):339–361.  https://doi.org/10.1002/jeab.202 PubMedCrossRefGoogle Scholar
  64. Malabou C (2005) The future of hegel: plasticity, temporality, and dialectic. Routledge, New York. http://public.eblib.com/choice/publicfullrecord.aspx?p=182396
  65. Maturana HR, Varela FJ (1992) The tree of knowledge: the biological roots of human understanding, Rev edn. Shambhala; Distributed in the U.S. by Random House, Boston/New YorkGoogle Scholar
  66. Moreno A, Mossio M (2015) Biological autonomy, History, Philosophy and theory of the life sciences, vol 12. Springer Netherlands, Dordrecht.  https://doi.org/10.1007/978-94-017-9837-2 CrossRefGoogle Scholar
  67. Moreno A, Etxeberria A, Umerez J (2008) The autonomy of biological individuals and artificial models. Biosyst Model Autonomy 91(2):309–319.  https://doi.org/10.1016/j.biosystems.2007.05.009 CrossRefGoogle Scholar
  68. Muntean I, Wright CD (2007) Autonomous agency, AI, and allostasis a biomimetic perspective. Pragmat Cogn 15(3):485–513CrossRefGoogle Scholar
  69. Noë A (2004) Action in perception. Representation and mind. MIT Press, Cambridge, MAGoogle Scholar
  70. Nolfi S, Floreano D (2000) Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. Intelligent robots and autonomous agents. MIT Press, Cambridge, MAGoogle Scholar
  71. Nolfi S, Floreano D, Miglino O, Mondada F (1994) How to evolve autonomous robots: different approaches in evolutionary robotics. In: Artificial life IV: Proceedings of the 4th International workshop on artificial life, pp 190–197Google Scholar
  72. O’Carroll PW, Berman AL, Maris RW, Moscicki EK, Tanney BL, Silverman MM (1996) Beyond the tower of Babel: a nomenclature for suicidology. Suicide Life Threat Behav 26(3):237–252PubMedGoogle Scholar
  73. O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24(05):939–973.  https://doi.org/10.1017/S0140525X01000115 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Odling-Smee FJ, Laland KN, Feldman MW (2001) Niche construction the neglected process in evolution. Princeton University Press, Princeton http://public.eblib.com/choice/publicfullrecord.aspx?p=1113401 Google Scholar
  75. Oudeyer P-Y, Kaplan F (2007) What is intrinsic motivation? A typology of computational approaches. Front Neurorobot 1.  https://doi.org/10.3389/neuro.12.006.2007
  76. Oyama S, Griffiths P, Gray RD (éds) (2001) Cycles of contingency: developmental systems and evolution. Life and mind. MIT Press, Cambridge, MAGoogle Scholar
  77. Parisi D (2014) Future robots: towards a robotic science of human beings, Advances in interaction studies, vol 7. John Benjamins Publication, Amsterdam/PhiladelphiaGoogle Scholar
  78. Piaget J (1967) Biologie et connaissance. Gallimard, ParisGoogle Scholar
  79. Preti A (2007) Suicide among animals: a review of evidence. Psychol Rep 101(3):831–848.  https://doi.org/10.2466/pr0.101.3.831-848 PubMedCrossRefGoogle Scholar
  80. Prozesky-Schulze L, Prozesky OPM, Anderson F, Van Der Merwe GJJ (1975) Use of a self-made sound baffle by a tree cricket. Nature 255(5504):142–143.  https://doi.org/10.1038/255142a0 CrossRefGoogle Scholar
  81. Rand S (2011) Organism, normativity, plasticity: Canguilhem, Kant, Malabou. Cont Philos Rev 44(4):341–357.  https://doi.org/10.1007/s11007-011-9196-3 CrossRefGoogle Scholar
  82. Robison B, Seibel B, Drazen J (2014) Deep-sea octopus (Graneledone Boreopacifica) conducts the longest-known egg-brooding period of any animal. Édité par Erik V. Thuesen. PLoS ONE 9(7):e103437. doi: https://doi.org/10.1371/journal.pone.0103437 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rowlands M (2009) Enactivism and the extended mind. Topoi 28(1):53–62.  https://doi.org/10.1007/s11245-008-9046-z CrossRefGoogle Scholar
  84. Rowlands M (2010) The new science of the mind: from extended mind to embodied phenomenology. A Bradford book. MIT Press, Cambridge, MACrossRefGoogle Scholar
  85. Ruiz-Mirazo K, Peretó J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosph 34(3):323–346PubMedCrossRefGoogle Scholar
  86. Ruyer R (1954) La cybernétique et l’origine de l’information. Flammarion, ParisGoogle Scholar
  87. Schoener TW (1971) Theory of feeding strategies. Annu Rev Ecol Syst 2(1):369–404.  https://doi.org/10.1146/annurev.es.02.110171.002101 CrossRefGoogle Scholar
  88. Serban C (2012) Capacités de l’animal, potentialités de l’ustensile et possibilités du Dasein. Philosophie 116(4):32.  https://doi.org/10.3917/philo.116.0032 CrossRefGoogle Scholar
  89. Serban C (2016) Phénoménologie de la possibilité: Husserl et Heidegger. Presses Universitaires De France – PUF, ParisGoogle Scholar
  90. Sillar KT, Picton L, Heitler WJ (2016) The neuroethology of predation and escape. Wiley/Blackwell, Chichester/HobokenCrossRefGoogle Scholar
  91. Simondon G (2010) Communication et information. Édité par Nathalie Simondon et Jean-Yves Chateau. les Éd. de la transparence, ChatouGoogle Scholar
  92. Sterelny K (2001) Niche construction, developmental systems, and the extended replicator. In: John Odling-Smee F, Laland KN, Feldman MW (eds) Niche construction the neglected process in evolution. Princeton University Press, Princeton, pp 333–349 http://public.eblib.com/choice/publicfullrecord.aspx?p=1113401 Google Scholar
  93. Stewart J, Gapenne O, Di Paolo EA (2010) Enaction toward a new paradigm for cognitive science. MIT Press, Cambridge, MA http://site.ebrary.com/id/10453038 CrossRefGoogle Scholar
  94. Sultan SE (2015) Organism and environment: ecological development, niche construction, and adaption, 1st edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  95. Turner JS (2000) The extended organism: the physiology of animal-built structures. Harvard University Press, Cambridge, MAGoogle Scholar
  96. Varela FG, Maturana HR, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5(4):187–196.  https://doi.org/10.1016/0303-2647(74)90031-8 CrossRefGoogle Scholar
  97. Vernon D (2010) Enaction as a conceptual framework for developmental cognitive robotics. Paladyn J Behav Robot 1(2).  https://doi.org/10.2478/s13230-010-0016-y
  98. Voight JR (2008) Observations of deep-sea octopodid behavior from undersea vehicles. Am Malacol Bull 24(1):43–50.  https://doi.org/10.4003/0740-2783-24.1.43 CrossRefGoogle Scholar
  99. von Uexküll J (1982) The theory of meaning. Semiotica 42(1):25–82Google Scholar
  100. Vygotskiĭ LS (1986) Thought and language. Translation newly rev. and edited. MIT Press, Cambridge, MAGoogle Scholar
  101. Williams GC (1966) Adaptation and natural selection: a critique of some current evolutionary thought. Princeton Science Library. Princeton University Press, PrincetonGoogle Scholar
  102. Xu ER, Kralik JD (2014) Risky business: rhesus monkeys exhibit persistent preferences for risky options. Front Psychol 5(avril).  https://doi.org/10.3389/fpsyg.2014.00258
  103. Ziemke T, Sharkey NE (2001) A stroll through the worlds of robots and animals: Applying Jakob von Uexkülls theory of meaning to adaptive robots and artificial life. Semiotica 1–4(134):701–746.  https://doi.org/10.1515/semi.2001.050 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG (outside the USA) 2019

Authors and Affiliations

  1. 1.Laboratoire d’Anthropologie des Mondes ContemporainsUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations